
Zbornik 21. mednarodne multikonference

INFORMACIJSKA DRUŽBA - IS 2018
Zvezek G

Proceedings of the 21st International Multiconference

INFORMATION SOCIETY - IS 2018
Volume G

Sodelovanje, programska oprema in storitve
v informacijski družbi

Collaboration, Software and Services
in Information Society

Uredil / Edited by
Marjan Heričko

http://is.ijs.si

8.–12. oktober 2018 / 8–12 October 2018
Ljubljana, Slovenia

Zbornik 21. mednarodne multikonference

INFORMACIJSKA DRUŽBA – IS 2018
Zvezek G

Proceedings of the 21st International Multiconference

INFORMATION SOCIETY – IS 2018
Volume G

Sodelovanje, programska oprema in storitve
 v informacijski družbi

Collaboration, Software and Services
 in Information Society

Uredil / Edited by

Marjan Heričko

http://is.ijs.si

8.–12. oktober 2018 / 8–12 October 2018

Ljubljana, Slovenia

http://is.ijs.si/
http://is.ijs.si/

Urednik:

Marjan Heričko

University of Maribor

Faculty of Electrical Engineering and Computer Science

Založnik: Institut »Jožef Stefan«, Ljubljana

Priprava zbornika: Mitja Lasič, Vesna Lasič, Lana Zemljak

Oblikovanje naslovnice: Vesna Lasič

Dostop do e-publikacije:
http://library.ijs.si/Stacks/Proceedings/InformationSociety

Ljubljana, oktober 2018

Informacijska družba

ISSN 2630-371X

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni

knjižnici v Ljubljani

COBISS.SI-ID=21853462

ISBN 978-961-264-141-2 (pdf)

http://library.ijs.si/Stacks/Proceedings/InformationSociety

PREDGOVOR MULTIKONFERENCI

INFORMACIJSKA DRUŽBA 2018

Multikonferenca Informacijska družba (http://is.ijs.si) je z enaindvajseto zaporedno prireditvijo osrednji

srednjeevropski dogodek na področju informacijske družbe, računalništva in informatike. Letošnja prireditev se

ponovno odvija na več lokacijah, osrednji dogodki pa so na Institutu »Jožef Stefan«.

Informacijska družba, znanje in umetna inteligenca so še naprej nosilni koncepti človeške civilizacije. Se bo

neverjetna rast nadaljevala in nas ponesla v novo civilizacijsko obdobje ali pa se bo rast upočasnila in začela

stagnirati? Bosta IKT in zlasti umetna inteligenca omogočila nadaljnji razcvet civilizacije ali pa bodo demografske,

družbene, medčloveške in okoljske težave povzročile zadušitev rasti? Čedalje več pokazateljev kaže v oba ekstrema

– da prehajamo v naslednje civilizacijsko obdobje, hkrati pa so notranji in zunanji konflikti sodobne družbe čedalje

težje obvladljivi.

Letos smo v multikonferenco povezali 11 odličnih neodvisnih konferenc. Predstavljenih bo 215 predstavitev,

povzetkov in referatov v okviru samostojnih konferenc in delavnic. Prireditev bodo spremljale okrogle mize in

razprave ter posebni dogodki, kot je svečana podelitev nagrad. Izbrani prispevki bodo izšli tudi v posebni številki

revije Informatica, ki se ponaša z 42-letno tradicijo odlične znanstvene revije.

Multikonferenco Informacijska družba 2018 sestavljajo naslednje samostojne konference:

 Slovenska konferenca o umetni inteligenci

 Kognitivna znanost

 Odkrivanje znanja in podatkovna skladišča – SiKDD

 Mednarodna konferenca o visokozmogljivi optimizaciji v industriji, HPOI

 Delavnica AS-IT-IC

 Soočanje z demografskimi izzivi

 Sodelovanje, programska oprema in storitve v informacijski družbi

 Delavnica za elektronsko in mobilno zdravje ter pametna mesta

 Vzgoja in izobraževanje v informacijski družbi

 5. študentska računalniška konferenca

 Mednarodna konferenca o prenosu tehnologij (ITTC)

Soorganizatorji in podporniki konference so različne raziskovalne institucije in združenja, med njimi tudi ACM

Slovenija, Slovensko društvo za umetno inteligenco (SLAIS), Slovensko društvo za kognitivne znanosti (DKZ) in

druga slovenska nacionalna akademija, Inženirska akademija Slovenije (IAS). V imenu organizatorjev konference se

zahvaljujemo združenjem in institucijam, še posebej pa udeležencem za njihove dragocene prispevke in priložnost,

da z nami delijo svoje izkušnje o informacijski družbi. Zahvaljujemo se tudi recenzentom za njihovo pomoč pri

recenziranju.

V letu 2018 bomo šestič podelili nagrado za življenjske dosežke v čast Donalda Michieja in Alana Turinga. Nagrado

Michie-Turing za izjemen življenjski prispevek k razvoju in promociji informacijske družbe bo prejel prof. dr. Saša

Divjak. Priznanje za dosežek leta bo pripadlo doc. dr. Marinki Žitnik. Že sedmič podeljujemo nagradi »informacijska

limona« in »informacijska jagoda« za najbolj (ne)uspešne poteze v zvezi z informacijsko družbo. Limono letos

prejme padanje državnih sredstev za raziskovalno dejavnost, jagodo pa Yaskawina tovarna robotov v Kočevju.

Čestitke nagrajencem!

Mojca Ciglarič, predsednik programskega odbora

Matjaž Gams, predsednik organizacijskega odbora

i

http://is.ijs.si/

FOREWORD - INFORMATION SOCIETY 2018

In its 21st year, the Information Society Multiconference (http://is.ijs.si) remains one of the leading conferences in

Central Europe devoted to information society, computer science and informatics. In 2018, it is organized at various

locations, with the main events taking place at the Jožef Stefan Institute.

Information society, knowledge and artificial intelligence continue to represent the central pillars of human

civilization. Will the pace of progress of information society, knowledge and artificial intelligence continue, thus

enabling unseen progress of human civilization, or will the progress stall and even stagnate? Will ICT and AI continue

to foster human progress, or will the growth of human, demographic, social and environmental problems stall global

progress? Both extremes seem to be playing out to a certain degree – we seem to be transitioning into the next

civilization period, while the internal and external conflicts of the contemporary society seem to be on the rise.

The Multiconference runs in parallel sessions with 215 presentations of scientific papers at eleven conferences, many

round tables, workshops and award ceremonies. Selected papers will be published in the Informatica journal, which

boasts of its 42-year tradition of excellent research publishing.

The Information Society 2018 Multiconference consists of the following conferences:

 Slovenian Conference on Artificial Intelligence

 Cognitive Science

 Data Mining and Data Warehouses - SiKDD

 International Conference on High-Performance Optimization in Industry, HPOI

 AS-IT-IC Workshop

 Facing demographic challenges

 Collaboration, Software and Services in Information Society

 Workshop Electronic and Mobile Health and Smart Cities

 Education in Information Society

 5th Student Computer Science Research Conference

 International Technology Transfer Conference (ITTC)

The Multiconference is co-organized and supported by several major research institutions and societies, among them

ACM Slovenia, i.e. the Slovenian chapter of the ACM, Slovenian Artificial Intelligence Society (SLAIS), Slovenian

Society for Cognitive Sciences (DKZ) and the second national engineering academy, the Slovenian Engineering

Academy (IAS). On behalf of the conference organizers, we thank all the societies and institutions, and particularly

all the participants for their valuable contribution and their interest in this event, and the reviewers for their thorough

reviews.

For the sixth year, the award for life-long outstanding contributions will be presented in memory of Donald Michie

and Alan Turing. The Michie-Turing award will be given to Prof. Saša Divjak for his life-long outstanding

contribution to the development and promotion of information society in our country. In addition, an award for current

achievements will be given to Assist. Prof. Marinka Žitnik. The information lemon goes to decreased national funding

of research. The information strawberry is awarded to the Yaskawa robot factory in Kočevje. Congratulations!

Mojca Ciglarič, Programme Committee Chair

Matjaž Gams, Organizing Committee Chair

ii

http://is.ijs.si/

KONFERENČNI ODBORI

CONFERENCE COMMITTEES

International Programme Committee Organizing Committee

Vladimir Bajic, South Africa

Heiner Benking, Germany

Se Woo Cheon, South Korea

Howie Firth, UK

Olga Fomichova, Russia

Vladimir Fomichov, Russia

Vesna Hljuz Dobric, Croatia

Alfred Inselberg, Israel

Jay Liebowitz, USA

Huan Liu, Singapore

Henz Martin, Germany

Marcin Paprzycki, USA

Karl Pribram, USA

Claude Sammut, Australia

Jiri Wiedermann, Czech Republic

Xindong Wu, USA

Yiming Ye, USA

Ning Zhong, USA

Wray Buntine, Australia

Bezalel Gavish, USA

Gal A. Kaminka, Israel

Mike Bain, Australia

Michela Milano, Italy

Derong Liu, USA

Toby Walsh, Australia

Matjaž Gams, chair

Mitja Luštrek

Lana Zemljak

Vesna Koricki

Mitja Lasič

Blaž Mahnič

Jani Bizjak

Tine Kolenik

Programme Committee

Franc Solina, co-chair

Viljan Mahnič, co-chair

Cene Bavec, co-chair

Tomaž Kalin, co-chair

Jozsef Györkös, co-chair

Tadej Bajd

Jaroslav Berce

Mojca Bernik

Marko Bohanec

Ivan Bratko

Andrej Brodnik

Dušan Caf

Saša Divjak

Tomaž Erjavec

Bogdan Filipič

Andrej Gams

Matjaž Gams

Marko Grobelnik

Nikola Guid

Marjan Heričko

Borka Jerman Blažič Džonova

Gorazd Kandus

Urban Kordeš

Marjan Krisper

Andrej Kuščer

Jadran Lenarčič

Borut Likar

Mitja Luštrek

Janez Malačič

Olga Markič

Dunja Mladenič

Franc Novak

Vladislav Rajkovič

Grega Repovš

Ivan Rozman

Niko Schlamberger

Stanko Strmčnik

Jurij Šilc

Jurij Tasič

Denis Trček

Andrej Ule

Tanja Urbančič

Boštjan Vilfan

Baldomir Zajc

Blaž Zupan

Boris Žemva

Leon Žlajpah

iii

iv

KAZALO / TABLE OF CONTENTS

Sodelovanje, programska oprema in storitve v informacijski družbi / Collaboration, Software and
Services in Information Society ... 1
PREDGOVOR / FOREWORD ... 3
PROGRAMSKI ODBORI / PROGRAMME COMMITTEES ... 5
Self-Assessment Tool For Evaluating Sustainability Of Ict In Smes / Soini Jari, Leppäniemi Jari, Sillberg

Pekka .. 7
Reference Standard Process Model For Farming To Support The Development Of Applications For

Farming / Rupnik Rok ..11
Semiotics Of Graphical Signs In Bpmn / Kuhar Saša, Polančič Gregor ..15
Knowledge Perception Infuenced By Notation Used For Conceptual Database Design / Kamišalić Aida,

Turkanović Muhamed, Heričko Marjan, Welzer Tatjana ..19
The Use Of Standard Questionnaires For Evaluating The Usability Of Gamfication / Rajšp Alen, Kous

Katja, Beranič Tina ...23
Analyzing Short Text Jokes From Online Sources With Machine Learning Approaches / Šimenko Samo,

Podgorelec Vili, Karakatič Sašo ...27
A Data Science Approach To The Analysis Of Food Recipes / Heričko Tjaša, Karakatič Sašo,

Podgorelec Vili ..31
Introducing Blockchain Technology Into A Real-Life Insurance Use Case / Vodeb Aljaž, Tišler Aljaž,

Chuchurski Martin, Orgulan Mojca, Rola Tadej, Unger Tea, Žnidar Žan, Turkanović Muhamed35
A Brief Overview Of Proposed Solutions To Achieve Ethereum Scalability / Podgorelec Blaž, Rek Patrik,

Rola Tadej ..39
Integration Heaven Of Nanoservices / Révész Ádám, Pataki Norbert ...43
Service Monitoring Agents For Devops Dashboard Tool / Török Márk, Pataki Norbert47
Incremental Parsing Of Large Legacy C/C++ Software / Fekete Anett, Cserép Máté51
Visualising Compiler-Generated Special Member Functions Of C++ Types / Szalay Richárd, Porkoláb

Zoltán ..55
How Does An Integration With Vcs Affect Ssqsa? / Popović Bojan, Rakić Gordana59

Indeks avtorjev / Author index ..63

v

vi

Zbornik 21. mednarodne multikonference

INFORMACIJSKA DRUŽBA – IS 2018
Zvezek G

Proceedings of the 21st International Multiconference

INFORMATION SOCIETY – IS 2018
Volume G

Sodelovanje, programska oprema in storitve
 v informacijski družbi

Collaboration, Software and Services
 in Information Society

Uredil / Edited by

Marjan Heričko

http://is.ijs.si

9. oktober 2018 / 9 October 2018

Ljubljana, Slovenia

1

http://is.ijs.si/
http://is.ijs.si/

2

PREFACE

This year, the Conference “Collaboration, Software and Services in Information Society” is

being organised for the eighteenth time as a part of the “Information Society” multi-conference.

As in previous years, the papers from this year's proceedings address actual challenges and best

practices related to the development of advanced software and information solutions as well as

collaboration in general.

Information technologies and the field of Informatics have been the driving force of innovation

in business, as well as in the everyday activities of individuals for several decades. Blockchain

technology, Big Data, intelligent solution, reference models, open standards, interoperability

and the increasing responsiveness of IS/IT experts are leading the way to the development of

intelligent digital service platforms, innovative business models and new ecosystems where not

only partners, but also competitors are connecting and working together. On the other hand,

quality assurance remains a vital part of software and ICT-based service development and

deployment. The papers in these proceedings provide a better insight and/or propose solutions

to challenges related to:

- Self-Assessment of Sustainability of ICT in SMEs;

- Ontology-based knowledge sharing on BPMN graphical signs using semiotics;

- Influence of notations used for conceptual design on knowledge perception;

- Application of machine learning techniques to obtain new knowledge;

- Establishment of domain specific reference models;

- Introduction of Blockchain technology into real-life use cases;

- Architectural design proposals for ensuring scalability of Blockchain platforms;

- Application of usability questionnaires when evaluating gamification and serious

games

- Visualization, analysis and comprehension of complex software systems;

- Continuous software development, integration and delivery;

- Integration of source code repositories and QA tools.

We hope that these proceedings will be beneficial for your reference and that the information

in this volume will be useful for further advancements in both research and industry.

Prof. Dr. Marjan Heričko

CSS 2018 – Collaboration, Software and Services in Information Society Conference Chair

3

PREDGOVOR

Konferenco “Sodelovanje, programska oprema in storitve v informacijski družbi” organiziramo

v sklopu multikonference Informacijska družba že osemnajstič. Kot običajno, tudi letošnji

prispevki naslavljajo aktualne teme in izzive, povezane z razvojem sodobnih programskih in

informacijskih rešitev ter storitev kot tudi sodelovanja v splošnem.

Informatika in informacijske tehnologije so že več desetletij gonilo inoviranja na vseh področjih

poslovanja podjetij ter delovanja posameznikov. Tehnologija veriženja blokov, velepodatki,

inteligentne storitve, referenčni modeli, odprti standardi in interoperabilnost ter vedno višja

odzivnost informatikov vodijo k razvoju inteligentnih digitalnih storitvenih platform in

inovativnih poslovnih modelov ter novih ekosistemov, kjer se povezujejo in sodelujejo ne le

partnerji, temveč tudi konkurenti. Napredne informacijske tehnologije in sodobni pristopi k

razvoju, vpeljavi in upravljanju omogočajo višjo stopnjo avtomatizacije in integracije doslej

ločenih svetov, saj vzpostavljajo zaključeno zanko in zagotavljajo nenehne izboljšave, ki

temeljijo na aktivnem sodelovanju in povratnih informacijah vseh vključenih akterjev. Ob vsem

tem zagotavljanje kakovosti ostaja eden pomembnejših vidikov razvoja in vpeljave na

informacijskih tehnologijah temelječih storitev.

Prispevki, zbrani v tem zborniku, omogočajo vpogled v in rešitve za izzive na področjih kot so

npr.:

- samoocenitev kakovosti in zrelosti IKT podpore v malih in srednje velikih

podjetjih;

- deljenje znanja o grafičnih simbolih BPMN z uporabo semiotike;

- vpliv notacije, uporabljene pri oblikovanju konceptualih modelov, na dojeti nivo

pridobljenega znanja;

- uporaba tehnik strojnega učenja za ekstrakcijo znanja;

- vzpostavitev domenskih referenčnih modelov;

- vpeljava tehnologije veriženja blokov v realne primere uporabe;

- arhitekturni predlogi za rešitev razširljivosti platform tehnologije veriženja blokov;

- uporaba standardnih vprašalnikov uporabnosti pri vrednotenju učinkov vpeljave

igrifikacije in resnih iger;

- vizualizacija, analiza in razumevanje kompleksnih programskih sistemov;

- neprekinjen razvoj, integracija in dobava informacijskih rešitev;

- integracija repozitorijev izvorne kode z orodji za zagotavljanje kakovosti.

Upamo, da boste v zborniku prispevkov, ki povezujejo teoretična in praktična znanja, tudi letos

našli koristne informacije za svoje nadaljnje delo tako pri temeljnem kot aplikativnem

raziskovanju.

prof. dr. Marjan Heričko

predsednik konference CSS 2018 – Collaboration, Software and Services in Information

Society Conference

4

PROGRAMSKI ODBOR / PROGRAM COMITTEE

Dr. Marjan Heričko

University of Maribor, Faculty of Electrical Engineering and Computer Science

Dr. Gabriele Gianini

University of Milano, Faculty of Mathematical, Physical and Natural Sciences

Dr. Hannu Jaakkola

Tampere University of Technology Information Technology (Pori)

Dr. Mirjana Ivanović

University of Novi Sad, Faculty of Science, Department of Mathematics and Informatics

Dr. Zoltán Porkoláb

Eötvös Loránd University, Faculty of Informatics

Dr. Stephan Schlögl

MCI Management Center Innsbruck, Department of Management, Communication & IT

Dr. Zlatko Stapić

University of Zagreb, Faculty of Organization and Informatics

Dr. Vili Podgorelec

University of Maribor, Faculty of Electrical Engineering and Computer Science

Dr. Maja Pušnik

University of Maribor, Faculty of Electrical Engineering and Computer Science

Dr. Muhamed Turkanović

University of Maribor, Faculty of Electrical Engineering and Computer Science

Dr. Boštjan Šumak

University of Maribor, Faculty of Electrical Engineering and Computer Science

Dr. Aida Kamišalić Latifić

University of Maribor, Faculty of Electrical Engineering and Computer Science

Dr. Gregor Polančič

University of Maribor, Faculty of Electrical Engineering and Computer Science

Dr. Luka Pavlič

University of Maribor, Faculty of Electrical Engineering and Computer Science

5

6

Self-Assessment Tool for Evaluating Sustainability of ICT

in SMEs

Jari Soini
Tampere University of Technology

P.O. Box 300
FI-28101 Pori, Finland

jari.o.soini@tut.fi

Jari Leppäniemi
Tampere University of Technology

P.O. Box 300
FI-28101 Pori, Finland

jari.leppaniemi@tut.fi

Pekka Sillberg
Tampere University of Technology

P.O. Box 300
FI-28101 Pori, Finland

pekka.sillberg@tut.fi

ABSTRACT

The ever-increasing demand for ICT may compromise global

objectives for emissions reduction if the aggregate effects of ICT

sustainability are not considered in the business digitalization

processes. In this paper, we present a free self-assessment tool

enabling small and medium sized companies to evaluate the

utilized ICT in terms of sustainability. The ICT4S is a free e-

service, in effect, a web-based self-assessment tool that was

developed in co-operation with Swiss Green IT SIG. The

assessment is currently divided into five categories of

sustainability questions. The categories are strategy, procurement

and recycling, practices, servers and network, and Green ICT. As

the result, organizations will gain a general understanding about

their state of sustainability, and practical suggestions for greater

eco-friendliness and sustainability of their ICT operations.

Categories and Subject Descriptors

• Social and professional topics~Sustainability • Information

systems~Web applications

General Terms

Measurement, Performance, Human Factors.

Keywords

Sustainability, Assessment, ICT, Metrics, Web tools, E-services.

1. INTRODUCTION
The study presented in this paper aims at contributing to the

business activity digitalization of companies concerning the

reduction of carbon footprint and improvement of sustainability.

The paper introduces a self-assessment tool developed in the

research project that allows companies to self-evaluate the

sustainability of the ICT exploited in the organization. The

objective is to provide companies with concrete tools and

proposals for actions enabling more ecological procedures in the

organization. Additionally, the knowledge gained by using the

self-assessment tool allows companies to become generally more

aware of the distribution of energy consumption in a modern ICT

infrastructure as well as the factors affecting sustainability of ICT.

2. BACKGROUND
There is a lot of evidence for significant benefits in terms of

productivity and cost savings through the exploitation of ICT in

the daily business activity of organizations. However, the

increasingly dependent use of ICT also brings about “invisible”

effects (e.g., electricity used by database servers, cloud servers,

and network routers) that may not be consciously recognized [1,

2, 3, 4]. Typically users are concerned only of the electricity

consumption of their own devices. The increasing demand for ICT

may, in fact, compromise the national objectives for emissions

reduction if the aggregate effects of ICT un-sustainability (Figure

1) are not considered in the business digitalization processes.

Figure 1. Environmental impacts of the ICT. [5]

In 2017, it was estimated that ICT accounted for 12% of the

overall electricity consumption around the globe, and the

percentage is expected to increase twice as rapidly in the future

(by approximately 7% per year). Most of the energy is consumed

by networks, server rooms, and computing centers, (Figure 2) the

efficiency of which should urgently be improved.

Figure 2. Electricity consumption in the ICT sector. [6]

As most of the electricity is still being generated by using fossil

fuels (Figure 3), the current ICT, and its heavy usage of electrical

energy, constitutes a global issue that is, unfortunately, little

known outside the expert field [7, 8]. This is partly due to the

users not perceiving the energy consumption of data systems

operating invisibly or in the background, but rather only noticing

the consumption of the terminal device, which, in reality,

comprises a fraction of the overall energy consumption (Figure 2).

7

Figure 3. Electricity generation by source of energy. [9]

The problem of energy consumption due to the constantly

increasing utilization of ICT is expected to further worsen

(Figures 4a and 4b) through the amount of IoT devices and

automatic steering systems [10]. If the majority of the predicted

IoT devices and information systems supporting them are

implemented by the current practices, a near-catastrophic peak

demand in terms of electricity will ensue. This, in turn, will result

in an increase in emissions rather than their reduction.

(a) Estimated growth.

(b) Estimated standby energy consumption.

Figures 4a and 4b. Estimated growth and impact of IoT

devices. [10]

Therefore, it is essential to establish instructions and an

assessment procedure to support system planning to improve

sustainability of ICT, and, thus, to promote methods for a low-

carbon economy.

In 2015 through 2017, the TUT Pori Department implemented a

research project (AjaTar) with the aim of improving the

digitalization of organizations and companies while promoting a

low-carbon economy and sustainability. As part of the project, a

technology enabling organizations to self-evaluate their ICT

sustainability was developed, tested, and studied, aiming at

increasing general awareness of the distribution of electricity

consumption in a modern IT infrastructure in order for the

organizations to be able to make ICT-related decisions more

consciously than before.

The most notable added value of the project comprise an increase

in knowhow and knowledge promoting easy and lightweight

assessment of sustainability in terms of the organization’s

business activities and support processes, as well as a freely

available tool for evaluating the sustainability of the ICT used in

the organization. By making the sustainability issues visible, the

objective was to change attitudes and conventions related to the

utilization of ICT in organizations: indeed, during the project,

several organizations distinctly declared their need to recognize

practices promoting sustainable development as well as invest in

an eco-friendly image.

3. ICT4S SELF-ASSESSMENT TOOL
During the last six years, the SEIntS research group from TUT

Pori Department has studied, developed, and piloted innovative

ICT solutions in cooperation with local organizations.

Additionally, SEIntS has collaborated with, for example Keio

University in Japan as well as with various information society

associations, for example, in Switzerland regarding the Green IT

and assessment of datacenters. As a result of the AjaTar project,

an open self-assessment website for organizations to quickly and

easily evaluate the ecological aspects of their ICT-related

operations was published at the end of 2017. The self-assessment

tool, developed in collaboration with Green IT SIG, a Swiss

Green IT information special interest group, is based on the

assumption that most of the ICT equipment used in an

organization is controllable, enabling the relatively easy

adjustment of various functions. With the assessment tool

developed in the project, it is possible to increase knowledge

about the ecological aspects related to the use of ICT in

organizations and, thus, affect their operations and practices.

Based on the self-assessment, the organization is offered overall

evaluation of the current state and propositions for practices for

more sustainable ICT operations.

The self-assessment tool is freely available on a dedicated website

for sustainable ICT [11]. On the landing page of the tool (Figure

5) there is a welcoming message that explains the goals of the

assessment. There is also information of the privacy solution that

is used to guarantee all the information of the assessor’s company.

The privacy solution is based on the HTML5 local storage

concept. The assessment menu is currently divided into five

categories of sustainability questions and the information of the

organization to be evaluated. The categories are: strategy,

procurement and recycling, practices, servers and network, and

Green ICT.

8

Figure 5. Welcoming the assessors.

Each of the categories comprises several questions and additional

text that explains the current issue to the assessor. While trying to

answer the questions, the assessor also receives background

information on the current topic. In Figures 6 and 7, the assessor

is facing questions concerning the strategy and practices at the

office.

Figure 6. Assessing the strategy.

Figure 7. Assessing practices at the office category.

After assessing all categories, the assessment tool calculates and

shows an evaluation of the given answers. The results are first

shown in a short form as in Figure 8, but users can explore the

results more carefully by selecting “Display detailed evaluation.”

The percentage and the color of the beams give a fast response of

the maturity of the different categories. In the case of 100% and a

green beam, the user can be satisfied with the sustainability state

of their company in that certain category. In the case of low

percentages (0 - 70%) or yellow or even red beams, the evaluation

shows that there is room for improvement. In such a case, the user

may find the detailed evaluation useful when planning concrete

actions for these improvements.

Figure 8. Brief results of the assessment.

The detailed evaluation can be shown by selecting the

corresponding option in the user interface (see Figure 9). The user

is also able to print the results – hopefully in a sustainable way,

for example using an e-format such as Portable Document Format

(PDF).

Figure 9. Detailed results of the assessment.

The assessment tool has now been in use for several months.

Unfortunately, we do not have the exact statistics concerning the

usage of the tool. However, we piloted the tool with the assistance

of local companies before launching it last December. Since the

piloting groups were satisfied with the tool and because we

wanted to keep our promises regarding the privacy of the

assessments, we did not implement any logging system in it.

We have planned to enhance the tool with a new capability –

aiming to enable an easy way to estimate the carbon footprint of

the ICT usage in a company. It will not be fully scientific life

cycle assessment (LCA) but a practical version of such targeted to

9

non-professionals in the field of sustainability. The reasoning for

this new capability is that we anticipate that by introducing easy

assessment tools we will be able to raise the awareness of

companies in terms of sustainability issues and thus help them to

develop their business processes toward a sustainable state.

4. RESULTS AND FUTURE WORK
This paper presented the ICT4S self-assessment tool enabling

companies and other organizations to evaluate the utilized ICT in

terms of a low-carbon economy and sustainability and thus

improve their image as well as resource efficiency. As the result,

organizations will gain a general understanding of the current

sustainability state of their ICT and practical suggestions for more

eco-friendly and sustainable operations.

The role of the TUT Pori Unit was to function as a producer and

facilitator of new knowledge. The applied project aimed at

contributing to the business development with TUT Pori Unit

acting as a distributor of knowledge and knowhow as well as an

innovator. Within the project, the accumulation of diverse energy-

related knowhow and knowledge and exploitation of sustainable

solutions of ICT in organizations were successfully implemented.

Further development is planned to be realized in the ICT4LC

project launched at the beginning of 2018. It focuses on

examining contemporary information processing that is based on

mobile and ‘thin clients’ as well as the increasing utilization rate

of information networks and cloud computing. The new project

explores tools for assessing the energy efficiency of business

activities and support processes as well as planning procedures of

business processes, promoting responsible and sustainable

utilization of ICT in organizations.

5. ACKNOWLEDGMENTS
Our thanks to Niklaus Meyer and Beat Koch from Swiss Green IT

SIG for collaboration.

6. REFERENCES
[1] Hilty, L., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann,

M., Wager, A.P. 2006. The relevance of information and

communication technologies for environmental sustainability

– A prospective simulation study. Environmental Modelling

& Software 2006, vol. 21, issue 11, 1618-1629.

[2] Hilty, L. 2008. Information technology and sustainability:

Essays on the relationship between ICT and sustainable

development. Books on Demand, Norderstedt.

[3] Amsel, N., Ibrahim, Z., Malik, A. and Tomlinson, B. 2011.

Toward sustainable software engineering: NIER track.

published in 33rd International Conference on Software

Engineering (ICSE), 21-28 May 2011, Honolulu, USA.

[4] Baliga, J., Hinton, K., Ayre, R. and Tucker, R.S. 2009.

Carbon footprint of the internet. Journal of Australia, vol.

59, no. 1, 5.1-5.14.

[5] Hilty, L. and Aebischer, B. (eds.). 2015. ICT Innovations for

Sustainability. Advances in Intelligent System and

Computing 310, Springer International Publishing,

Switzerland.

[6] Corcoran, A. and Andrae, A. 2013. Emerging Trends in

Electricity Consumption for Consumer ICT. Retrieved

August 22, 2018 from https://www.researchgate.net/profile/

Anders_Andrae/publication/255923829_Emerging_Trends_i

n_Electricity_Consumption_for_Consumer_ICT/

[7] Pickavet, M., Vereecken, W., Demeyer, S., Audenaert, P.,

Vermeulen, B., Develder, C., Colle, D., Dhoedt, B. and

Demeester, P. 2008. Worldwide energy needs for ICT: The

rise of power-aware networking. In proceedings of 2nd

International Symposium on Advanced Networks and

Telecommunication Systems, 1-3.

[8] Lambert, S., and Van Heddeghem, W. 2012. Worldwide

electricity consumption of communication networks. Optics

Express, vol. 20, no. 26, 513-524.

[9] OECD Factbook 2014: Economic, Environmental and Social

Statistics. Retrieved August 27, 2018 from

http://dx.doi.org/10.1787/888933025499

[10] International Energy Agency. 2016. Energy Efficiency of the

Internet of Things, Technology and Energy Assessment

Report. Prepared for IEA 4E EDNA. Retrieved August 27,

2019 from https://www.iea-4e.org/document/384/energy-

efficiency-of-the-internet-of-things-technology-and-energy-

assessment-report

[11] Tampere University of Technology. 2017. ICT4S Self

Assessment. Retrieved August 27, 2018 from https://green-

ict.fi/arviointi/?lang=en

10

Reference Standard Process Model for Farming to Support
the Development of Applications for Farming

Rok Rupnik
Faculty of Computer and Information

Science
University of Ljubljana

Ljubljana, Slovenia
+386 1 479 8266

rok.rupnik@fri.uni-lj.si

ABSTRACT

The paper introduces the idea and the concepts of a Reference

Standard Process Model (RSPMF) which are based on the concepts

of COBIT, an IT governance framework used worldwide. Our

research on RSPMF is focused in two directions. First, RSPMF is

aimed at becoming a support for Product Managers in software

companies developing software products or IoT systems. Namely,

each process in RSPMF is described through the following

components: Process goals, process metrics, KPI’s (Key

Performance Indicators) and process activities, Second, RSPMF is

aimed to help managers or owners of bigger farms in farm

management. The paper introduces research in the progress state of

our research.

Categories and Subject Descriptors
D.2.2 [Requirements/Specifications]: Tools.

General Terms

Farming, Standardization, Process model.

Keywords

Standard Process Model, COBIT, Transformation of model.

1. INTRODUCTION
In recent years, farming has become an area with extensive need

for the use of information systems and IoT technologies [1]. The

experience gained in an EU funded project has revealed that

software companies have diverse and unequal knowledge and

understanding of farming processes, activities within processes and

metrics. This causes a problem when software products and IoT

systems need to be integrated. There are many software products

and IoT systems on the market today, but each of them covers a

quite narrow functional area and, for the treason the integration, is

simply a necessity [2].

The Reference Standard Process Model is one way to help Product

Managers at software companies in removing the gap of diverse

and unequal knowledge and understanding of farming processes,

activities within processes and metrics. The reference model can

become a common denominator, a kind of Esperanto, as a

knowledge base for the development of software products and IoT

systems for farming. The reference model, on the other hand, will

also help farm managers and owners in farm management.

We built and designed a Reference Standard Process Model for

Farming (RSPMF) based on the idea and concepts of the COBIT

framework, which is defined for the area of IT governance [3], [4].

This paper introduces the research in progress and the concepts we

have managed to define so far: Domains, processes and elements

of process description. We also introduce the current list of

processes and domains.

The structure of the paper is as follows. The second chapter

introduces the EU funded project AgroIT, during which the idea for

the Reference Standard Process Model arose. Only aspects of the

project relevant for the content of this paper are introduced. The

third chapter introduces key findings from the AgroIT project

which led to the idea of RSPMF. To support the idea of RSPMF the

COBIT framework for IT governance is also introduced, since

many concepts of RSPMF are taken from the COBIT framework.

The fourth chapter introduces the RSPMF, its concepts, draft list of

domains and their processes, and the methodology to facilitate the

sustainability of RSPMF. The last chapter contains the conclusion

and directions for future work on the RSPMF.

2. EXPERIENCE GAINED IN THE AgroIT

PROJECT
AgroIT was an EU funded project covering various previously

mentioned aspects and problems in today’s implementation of IT

and IoT in farming [5], [6]. First, the project included the

implementation of ERP systems for farming: A traditional ERP

system for small and medium enterprises which, additionally, also

has modules for livestock, fruit growing, winery, etc. [7]. This area

of farm management was covered, which was the subject of several

papers in recent years [8][1], [2], [6], [7], [9], [10]. Second, the

project included the implementation of a decision support system

based on advanced methods to support decision processes in

farming [8]. This way, the area of the use of decision support within

farm management was covered [1], [6]. Third, the project included

the implementation of IoT systems where various sensors were

used to collect data about several measurements [2], [11], [12].

Having (a lot of) data available is the basis for farm management

and operations of farms [13]. Fourth, the project also covered the

implementation of the cloud integration platform. All applications

and IoT systems were integrated through the cloud integration

platform to facilitate data exchange between them [6], [12], [14].

Six software companies (they were called software partners during

the project) cooperated in the AgroIT project with their software

products: Applications, IoT systems and the cloud integration

platform. Each software company “contributed” their product to the

project and, during the project, software products were improved

significantly, i.e. upgraded and extended. They were also improved

implicitly through integrations between each other.

For the pilot use of integrated software products and IoT systems

several pilot projects were organised in 5 EU countries by pilot

11

partners. Pilot partners did not do software implementation in the

project, but supported pilot farms in the use of software products.

For that reason, pilot partners were organisations with extensive

knowledge in agriculture and experience in consulting for farming.

3. KNOWLEDGE OF FARMING FOR

IMPLEMENTATION OF SOFTWARE

PRODUCTS AND IoT SYSTEMS FOR

FARMING
Improving software products and IoT systems was based on and

extending existing functionalities of software products and IoT

systems and upgrading them with new ones. The key goal of the

project was to design functionalities which base on integration

between software products and IoT systems. This means that a

software product also can use data from another software product

or IoT system.

During the analysis and design phase it has become apparent that

software partners have diverse and unequal knowledge and

understanding of farming processes, activities within processes and

metrics. The gap was even bigger when compared to the knowledge

and understanding of the pilot partners.

The diversity mentioned, and having the expertise of COBIT, has,

step-by-step, led to the idea of transferring the idea of COBIT to be

used for farming [3], [4].

3.1 COBIT framework for IT governance
COBIT has, in recent years, become a de-facto Standard for IT

governance in companies and organisations. COBIT defines a set

of generic processes (IT processes) for the management of IT. For

each IT process the following is defined: Process inputs and

outputs, goals of the process, key process activities, metrics of the

process (performance measures), and levels of process maturity

(maturity model) [3]. The development of COBIT has been

progressing since 1996, from version 1 to the current version 5.

COBIT is the result of several working groups of highly

experienced experts as coordinated work owithin ISACA, which is

an international professional association focused on IT governance.

COBIT is defined as a process model which divides IT into four

domains: Plan and Organise, Acquire and Implement, Deliver and

Support, and Monitor and Evaluate). Domains have altogether 34

defined IT processes.

The schema below shows a meta model of COBIT and all of its

concepts. The schema reveals the business orientation of COBIT:

The aim of defining the COBIT framework is to align IT and

business where business goals dictate IT goals [3], [4].

Figure 1. COBIT meta model [3]

A detailed explanation of the schema, i.e. a detailed explanation of

the concepts and relations between them is beyond the scope of this

paper.

3.2 The idea of the Standard Process Model

for Farming
The idea and concept of the previously introduced COBIT

framework and the problems based on the diversity of knowledge

of partners in the project initiated the idea of a Standard Process

Model for farming. COBIT is,, therefore based on various concepts,

and those concepts can be used and adapted in other areas as well,

not only in IT governance. The idea and concepts of COBIT were

already transferred and used in the governance of Flood

Management [15] and Nursing [16].

The transfer of the idea and concepts of a particular Standard or

framework to another area, in this case the transfer of COBIT to the

area of farming, does not mean a one-to-one transfer. Some

concepts of source area (in this case, IT governance), might not be

relevant or have any sense in the destination area (in this case

farming). For this reason, a successful and significant transfer with

useful outcome can only be achieved through:

 Good understanding of the idea and concepts of the

framework of the source area (in this case COBIT),

 Extensive knowledge and experience on the destination

area: Processes and their activities, metrics,

responsibilities, rules, etc.

4. REFERENCE STANDARD PROCESS

MODEL FOR FARMING (RSPMF)
As can be concluded based on the previous discussion, we designed

RSMPF on the idea and concepts of COBIT 4.1 [3]. In the literature

we so far haven’t found any paper representing a Standard Process

Model for Farming.

4.1 The concepts of RSMPF
Processes are divided on three hierarchical levels which are called

domains: Govern and Monitor (GM), Plan and Manage (PM) and

Implement and Execute (IE).

Farming has several branches: Livestock, fruit growing,

agriculture, winery (viticulture), etc. RSMPF enables modular

definition of processes for every branch of farming. For the Govern

and Monitor domain only common processes are defined, for the

other two domains, a process module is also added for every branch

of farming. For now, only the process module for livestock is

defined for domains PM and IE.

Each process is described through the following components:

Process goals, process metrics, KPI’s (Key Performance

Indicators) and process activities.

Each process has a unique code, which reveals the domain to which

the process belongs and the process module. The code of Common

Processes is CP and the code for LiveStock is LS.

The aim of defining RSPMF is not to prevail over any existing

Standard for farming. RSMPF is defined and structured to be

opened and enables the reference to any existing Standard in the

process description section.

4.2 Target groups and aimed benefits of

RSPMF
When designing a Standard Process Model, regardless of the area

it is intended for, the group designing it must first decide which are

12

the target groups who will use the model, and what should be the

benefits of its use. For target groups this should become a

Reference Standard Process Model.

We designed RSPMF for the following groups:

 Product Managers in software companies which

develop software products and IoT systems for farming.

As can be revealed from our discussion, we noticed the

need for a Standard Process Model,

 Managers and owners of bigger farms: COBIT is the

first place aimed at bigger companies. Each Standard

Process Model should, in our opinion, be sized for bigger

institutions (organisations in general). Smaller

institutions then use it to the extent for which they

believe is suitable for them. We followed this approach

in the designing of the RSPMF.

The aimed benefits for Product Managers are as follows:

 Based on experience from the AgroIT project, we can

state that there is a diversity of farming knowledge of

Product Managers in software companies. RSPMF will

become a common denominator, a kind of Esperanto as

a knowledge base for the development of software

products and IoT systems for farming,

 We expect the integrations between various software

products and IoT systems to be more straightforward

and “softer” if Product Managers will base

functionalities on RSPMF.

We are designing RSPMF to reach several aimed benefits for

managers and owners of bigger farms:

 Knowledge and experience of farming experts and

academics will, step by step, be transferred to RSPMF.

We could say that RSPMF introduces the best practices

for farming,

 RSPMF provides the best practice guidelines for

processes and their activities on farms. This helps

managers ensure that the processes perform according

to best practice,

 Metrics and KPI’s are defined for processes. This helps

managers to set goals and execute monitoring. This

lowers various risks,

 Managers can identify gaps in process execution and

monitoring. This helps them close the gaps identified

and improve processes,

 Managers can be better prepared for any auditing. If a

particular audited farm will be “RSPMF compliant”,

then this will increase the trust of auditors,

 Not only managers, but also other personnel working

on farm can learn about processes, metrices and KPI’s.

4.3 Draft list of domains and their processes
We already have defined a draft list of domains and their processes.

Govern and Monitor (GM):

 GM.01: Define and maintain strategy

 GM.02: Ensure profitability

 GM.03: Ensure risk governance

 GM.04: Ensure machinery and equipment governance

 GM.05: Ensure IT and innovation governance

 GM.06: Ensure compliance with legislation

 GM.07: Enable external and internal control

 GM.08: Manage and monitor process definition and

change

 GM.09: Implement and monitor implementation of

strategy

Plan and Manage (PM) – Common Processes (CP):

 PM.CM.01: Manage implementation of strategy and

investments

 PM.CM.02: Manage budget and cost

 PM.CM.03: Manage financials

 PM.CM.04: Manage risks

 PM.CM.05: Manage human resources

 PM.CM.06: Manage buildings and security

 PM.CM.07: Manage products sales

 PM.CM.08: Manage suppliers

 PM.CM.09: Manage sub-contractors

 PM.CM.10: Manage certifications

 PM.CM.11: Manage environment and protection

 PM.CM.12: Manage energy consumption

 PM.CM.13: Manage energy production

 PM.CM.14: Manage farming machinery

 PM.CM.15: Manage equipment

 PM.CM.16: Manage IT

 PM.CM.17: Manage information system

 PM.CM.18: Manage innovations

 PM.CM.19: Manage investment projects

 PM.CM.20: Manage needs and expectations

 PM.CM.21: Manage knowledge and legislation

 PM.CM.22: Manage changes based on legislation

demands

 PM.CM.25: Manage changes based on IT and

innovation

 PM.CM.26: Manage assets

 PM.CM.27: Manage technical capacity

 PM.CM.28: Manage internal control

Plan and Manage (PM) – LiveStock (LS):

 PM.LS.01: Manage animal sales

 PM.LS.02: Manage animal purchases

 PM.LS.03: Manage animals` health and veterinary

service

 PM.LS.04: Manage animal welfare

 PM.LS.05: Manage hygiene

 PM.LS.06: Manage animal feeding and grazing

 PM.LS.07: Manage animal reproduction

 PM.LS.08: Manage animal breeding plan

Implement and Execute (IE) – Common Processes (CP):

 IE.CM.01: Perform internal control

 IE.CM.02: Perform farm accounting

 IE.CM.03: Perform maintenance of buildings

 IE.CM.04: Perform employments and other Human

Resource issues

 IE.CM.05: Perform product sales

 IE.CM.06: Perform purchases of equipment

 IE.CM.07: Perform purchases of farming machinery

 IE.CM.08: Perform purchases and implementation of

software products

 IE.CM.09: Perform asset maintenance

 IE.CM.10: Perform purchases

Implement and Execute (IE) – LiveStock (LS):

 IE.LS.01: Perform animal feeding

 IE.LS.02: Perform animal movements and grazing

 IE.LS.03: Preform animal health checking and health

treatment

 IE.LS.04: Perform sales of animals

13

 IE.LS.05: Perform purchasing of animals

 IE.LS.06: Perform animal selection

 IE.LS.07: Perform animal reproduction

4.4 Concepts of methodology to facilitate the

sustainability of RSPMF
COBIT was first issued in 1996, and this means that it has been

going through evolution, where experts from the whole world

participated. COBIT is now version 5, but had several versions

before that [3], [4].

To facilitate the sustainability of RSPMF, we plan a similar

approach. We have plan to issue the first version in a year or year

and a half. The first version will cover only livestock. We will form

an international panel of experts of various profiles: Consultants,

academics, Product Managers, farmers and government officials.

5. CONCLUSION AND FUTURE WORK
We have introduced the research in progress for the idea and

concepts of the Reference Standard Process Model for Farming.

Our aim of the design of reference model is to improve the support

for managers and owners of bigger farms in farm management.

Another aim is to facilitate Product Managers in development of

software products and IoT systems.

In midterm, we also want RSPMF to be suitable for government

and EU officials who are responsible for farming. At the moment,

we plan to add the concept of maturity levels of a process. The

maturity level of a process will show or indicate the level of detail

and expertise with which a farm executes a process. This way, the

comparison of different farms will also be possible.

We are aware that there are two phases of defining RSPMF: First,

to define its concepts and structure; second, to put content in the

structure of processes` descriptions. Those two phases overlap,

because, while inserting the content, for sure some ideas to change

structure will appear. The definition of concepts and the structure

is our research mission for the next 12 months, that is how we plan

it.

6. REFERENCES
[1] A. Kaloxylos et al., “A cloud-based Farm Management

System: Architecture and implementation,” Comput.

Electron. Agric., vol. 100, pp. 168–179, Jan. 2014.

[2] S. Fountas et al., “Farm management information systems:

Current situation and future perspectives,” Comput.

Electron. Agric., vol. 115, pp. 40–50, 2015.

[3] ISACA, COBIT 4.1. 2007.

[4] ISACA, COBIT5: Enabling Processes. 2012.

[5] L. Ruiz-Garcia and L. Lunadei, “The role of RFID in

agriculture: Applications, limitations and challenges,”

Comput. Electron. Agric., vol. 79, no. 1, pp. 42–50, Oct.

2011.

[6] A. Kaloxylos et al., “Farm management systems and the

Future Internet era,” Comput. Electron. Agric., vol. 89, no.

null, pp. 130–144, Nov. 2012.

[7] C. N. Verdouw, R. M. Robbemond, and J. Wolfert, “ERP in

agriculture: Lessons learned from Dutch horticulture,”

Comput. Electron. Agric., vol. 114, pp. 125–133, 2015.

[8] R. Rupnik, M. Kukar, P. Vračar, D. Košir, D. Pevec, and Z.

Bosnić, “AgroDSS: A decision support system for

agriculture and farming,” Comput. Electron. Agric., no.

November 2017, 2018.

[9] R. Nikkilä, I. Seilonen, and K. Koskinen, “Software

architecture for farm management information systems in

precision agriculture,” Comput. Electron. Agric., vol. 70, no.

2, pp. 328–336, Mar. 2010.

[10] C. G. Sørensen et al., “Conceptual model of a future farm

management information system,” Comput. Electron. Agric.,

vol. 72, no. 1, pp. 37–47, Jun. 2010.

[11] J. De Baerdemaeker, Precision Agriculture Technology and

Robotics for Good Agricultural Practices, vol. 46, no. 4.

IFAC, 2013.

[12] J. Santa, M. A. Zamora-Izquierdo, A. J. Jara, and A. F.

Gómez-Skarmeta, “Telematic platform for integral

management of agricultural/perishable goods in terrestrial

logistics,” Comput. Electron. Agric., vol. 80, no. null, pp. 31–

40, Jan. 2012.

[13] J. W. Jones et al., “Toward a new generation of agricultural

system data, models, and knowledge products: State of

agricultural systems science,” Agric. Syst., vol. 155, pp. 269–

288, 2017.

[14] J. W. Kruize, R. M. Robbemond, H. Scholten, J. Wolfert, and

a. J. M. Beulens, “Improving arable farm enterprise

integration - Review of existing technologies and practices

from a farmer’s perspective,” Comput. Electron. Agric., vol.

96, pp. 75–89, 2013.

[15] M. Othman, M. Nazir Ahmad, A. Suliman, N. Habibah

Arshad, and S. Maidin, “COBIT principles to govern flood

management,” Int. J. Disaster Risk Reduct., vol. 9, 2014.

[16] M. Burnik, “The Approach for the Presentation of Nursing

Processes,” University of Primorska, 2011.

14

Semiotics of graphical signs in BPMN
Saša Kuhar

Faculty of Electrical Engineering and Computer Science
University of Maribor

Maribor, Slovenia

sasa.kuhar@um.si

Gregor Polančič
Faculty of Electrical Engineering and Computer Science

University of Maribor
Maribor, Slovenia

gregor.polancic@um.si

ABSTRACT
The terminology of graphical signs (e.g. icons, symbols,

pictograms, markers etc.) is ambiguous in academic articles. This

is the same with articles focusing on graphics in business

notations, although concepts of graphical elements in notations

are well defined. In semiotics, on the other hand, the concepts

related to signs are defined in detail. In this paper, we examined

linguistic terms that are used for describing graphical elements in

BPMN specifications (BPMN being the de-facto Standard of

business notations), and related them to the terminology specified

in semiotics. We created a Sign ontology with BPMN graphical

signs as ontology instances. The ontology can be used by

researchers to share common knowledge about concepts of signs,

symbols, icons, and indices, as well as the knowledge on BPMN

graphical signs.

Categories and Subject Descriptors

H.1.m [Information Systems]: Models and Principles,

Miscellaneous.

General Terms

Management, Documentation, Design, Languages, Theory.

Keywords

Business Process Model and Notation, BPMN, Semiotics,

Ontologies, Graphical signs, icons.

1. INTRODUCTION
Business process diagrams provide a graphical notation for

specifying business processes. Among many business notations,

Business Process Model and Notation (BPMN) is known as

the de-facto Standard [1]. BPMN consists of execution semantics

and notation, the latter including graphical elements such as

shapes, arrows, icons, and labels. Those elements are all signs

where each has a defined meaning and represents a certain concept.

However, terminology for graphical elements (e.g. icon, sign, or

shape) is not used consistently among researchers in this domain.

If one, for example, wants to perform a literature search on icons

in BPMN, the term icon does not incorporate all linguistic terms

that different authors use in their articles (other words for icon can

be pictogram, symbol, sign, marker etc). Even in BPMN

specifications [2], those terms are not used uniquely, but with

loosely defined synonyms.

With this situation in mind we formulated the following research

questions:

RQ1: What are the linguistic terms that are used in the BPMN

specification for graphical shapes, graphical icons, and other

visual signs?

RQ2: Can we categorize graphical signs from BPMN according

to semiotic studies?

We organized the remainder of the article as follows. The next

chapter presents the theoretical background. Chapters 3 and 4

represent the main objective of this paper – answering the

research questions. The conclusion is given in the last chapter.

2. BACKGROUND

2.1 Semiotics
Semiotics is the study of signs and symbols (not only visual) and

their use or interpretation. For the purpose of the terminology

definition, we will sum the book of Daniel Chandler Semiotics:

The basics [3], which offers a comprehensive explanation of the

field, including many views of modern theoreticians. There are

two main traditions in contemporary semiotics: From Ferdinand

de Saussure and Charles Sanders Peirce.

Saussure's model of signs consists of two parts: Signifier (the

form that the sign takes) and signified (the concept to which it

refers). The sign is then the whole that results from the association

of the signifier and the signified (Figure 1 on the left). For

Saussure, both signifier and signified take non-material form

rather than substance. Nowadays, common adoption of his model

takes a more materialistic form, where the signifier is commonly

interpreted as the material that can be seen, heard, touched,

smelled or tasted. Being concerned mostly with linguistics,

Saussure stressed that the relationship between the signifier and

the signified is relatively arbitrary: There is no inherent, essential,

transparent, self-evident or natural connection between the

signifier and the signified – between the sound of a word and the

concept to which it refers [3].

Figure 1: Saussure's model of signs on the left and Peirce`s

model of signs on the right

Peirce, on the other hand, introduced a three-part model

consisting of: Representamen (the form which the sign takes,

also called “sign vehicle” or, in the Saussurean model, the

signifier), interpretant (the sense made of the sign, or signified in

Saussure's model). and object (something beyond the sign to

which it refers, also called the referent). In this model, the sign is

the unity of what is represented (the object), how it is represented

(the representamen) and how it is interpreted (the interpretant)

(Figure 1 on the right). The term sign is often used loosely and

15

confused with signifier or representamen. However, the signifier

or representamen is the form in which the sign appears, whereas

the sign is the whole meaningful unity [3].

2.1.1 Symbol, Index, Icon
In addition to his sign model, Peirce offered a classification of

signs, based on the relationship between representamen and its

object or its interpretant, or, in Sausurres’ terms, the relationship

between signifier and signified. Dependent upon the relationship

being more arbitrary, directly connected, or more resembling,

three types of signs are possible: Symbol, index, and icon

respectively.

SYMBOL represents a relationship where the signifier does not

resemble the signified, but which is arbitrary or conventional.

The relationship must be agreed upon and learned, such as in

language (letters, words, phrases, and sentences), numbers, Morse

code, traffic lights or national flags.

INDEX denotes a relationship where the signifier is not arbitrary,

but connected directly (physically or causally) to the signified,

which can be observed or inferred. An index indicates something

(that is, necessarily, existent). Examples are natural signs (smoke,

thunder, footprints), medical symptoms (pain, a rash, pulse-rate),

measuring instruments (thermometer, clock), ‘signals’ (a knock on

a door, a phone ringing), recordings (a photograph, a film, video

shot), personal ‘trademarks’ (handwriting, catchphrases).

ICON represents a relationship where the signifier is perceived as

resembling or imitating the signified – being similar in possessing

some of its qualities, like a portrait, a cartoon, a scale-model,

onomatopoeia, metaphors, sound effects in radio drama, a dubbed

film soundtrack and imitative gestures. [3]

2.1.2 Synonyms of terms
The terminology from semiotics is used rarely in popular

language. The term sign in semiotics is frequently replaced by the

term symbol in popular usage [3]. Also, several meanings of the

term icon can be found in everyday language: a) To be iconic

means that something or someone is recognized as famous, b) In

computing, an icon is a small image intended to signify a

particular function to the user (in semiotic terms these are signs

which may be iconic, symbolic or indexical), c) Religious icons

represent sacred, holy images [3]. If not stated otherwise, we will

continue to use terms as defined in semiotics throughout this paper.

2.2 Ontologies
Ontologies are explicit formal specifications of the terms in a

domain and the relationships among them [4]. They define

common vocabulary and can, among other things, be used by

researchers, who need to understand and share the structure of

information in a domain [5]. Because of these reasons, we find

them appropriate for terminology clarification in the domain of

Graphical Signs in BPMN. Our research purpose is mainly

definition of terms, so our ontology will, according to Obrst [6],

be of the weak to moderately strong semantics, not intended to be

used for machine processing or machine interpretation (at least

not at this stage of our research).

3. LINGUISTIC TERMS IN BPMN

SPECIFICATION
To answer the first RQ (What are the linguistic terms that are used

in the BPMN specification for graphical shapes, graphical icons,

and other visual signs?) we examined the BPMN specifications

and mapped the specifications’ terms to semiotics’ terms. In

BPMN specifications the signs are denominated as follows: The

term BPMN element represents the term signified, the terms

shape, object, marker, indication, icon and depiction stand for

signifier. The answer to RQ1 and a detailed meaning of each

BPMN term is provided in Table 1.

Table 1: Linguistic terms used in BPMN specifications

Semiotics’

terms

BPMN

terms

Detailed meanings in BPMN

specification

Signified BPMN element Concepts in business notation

Signifier

Shape Graphical element

Object
Basic shape (e.g. circle

representing simple event)

Marker,

Indicator or

Icon

Graphical icon that can be

included in an object (e.g.

message icon)

Depiction Graphical example of the usage

As we can observe from the Table above, many linguistic terms

are used for signifier, some of which are not used consistently

(e.g. marker, indicator, and icon). The only term from semiotics

that is used in BPMN specifications is the term icon, that is used

to denote a graphical icon and stands for the term signifier.

4. ONTOLOGY CONSTRUCTION
For the purpose of Ontology construction and answering RQ2

(Can we categorize graphical signs from BPMN according to

semiotic studies?), we followed recommendations in Ontology

Development 101: A Guide to Creating Your First Ontology [5].

The authors suggest taking the following 7 steps for ontology

creation: Step 1. Determine the domain and scope of the ontology,

Step 2. Consider reusing existing ontologies, Step 3. Enumerate

important terms in the ontology, Step 4. Define the classes and the

class hierarchy, Step 5. Define the properties of classes, Step 6.

Define the facets of the slots, and Step 7. Create instances. Steps 4

and 5 are closely intertwined and can be executed simultaneously.

4.1 Domain and scope of BPMN Sign

ontology
For the domain definition, the authors [5] propose answering

several questions. Our answers are provided below, after the

proposed questions.

What is the domain that the BPMN Sign ontology will cover?

Signs in BPMN

What are we are going to use the ontology for?

To share a common understanding of knowledge about signs

among researchers, and to be able to reuse and analyze domain

knowledge.

For what types of questions should the information in the

ontology provide answers?

Definitions of concepts in semiotics and relationships among

them, categorization of BPMN graphical signs according to

semiotics’ concepts, and the frequency of occurrence of sign types

in BPMN.

Who will use and maintain the ontology?

The ontology will be maintained and used by us and will be

available for other interested researchers.

To determine the scope of the ontology, a list of competency

questions can be used that ontology will be able to answer [5].

16

The competency questions we defined are listed next.

 What does the term icon mean?

 How do icons, indices, and symbols correlate?

 Which type of sign (icon, index or symbol) is used most

in BPMN?

 Are symbols always arbitrary, or can they convey a

certain degree of meaning?

4.2 Reuse of existent ontology
With a literature search we found no existing ontologies in the

domain of signs or icons. However, we identified a Business

Process Modelling Ontology (BPMO) that has been built

automatically, starting from the XML schemas contained in the

BPMN 2.0 specifications from OMG [7]. It contains all the

BPMN elements and their relationships as defined BPMN

specifications. The class that is related most closely to our

research domain (Graphical Signs) is DiagramElement and its

subclasses (Figure 2). This class is, in BPMN specifications,

defined under BPMN Diagram Interchange (BPMN DI) meta-

model and schema for the purpose of the unambiguous rendering

of BPMN diagrams in different tools [2].

Figure 2: DiagramElement class and its subclasses in BPMO,

visualized by the OntoGraf plugin for Protégé

As our focus in Sign Ontology is mainly on graphical signs that

are, as such, not contained in BPMO, we will start our own

ontology and, later, consider the options of merging both

ontologies.

4.3 Definition of concepts in Sign Ontology
The next step in ontology creation is the enumeration of important

terms. We defined the concepts for BPMN sign ontology from

semiotics (Sign, Icon, Index, and Symbol), and from BPMN

(BasicShape, Activity, Event, Gateway, and Data).

4.4 Relationships among concepts
For the definition of a hierarchy of classes and their properties, we

will next define the relationships among three types of signs,

again from semiotics.

At first sight, the relationship among the signifier and the

signified (and, consequently, the types of signs) seems

unambiguous, but that is not always the case. We should keep in

mind that signs denote concepts (not material objects), and each

person has their own understanding of a certain concept in his or

her mind. Concepts cannot be represented precisely [8] therefore

icons, for example, cannot be denoted simply as similar. They are

defined by perceived similarity [3]. Also, as stated in [9], the

process of sign-making is the process of the constitution of

metaphor, and, therefore, symbols are never only arbitrary.

Within each type, signs vary in their degree of conventionality.

Therefore, we must not speak of types of signs but of modes of

relationships where the difference between signs lays in the

hierarchy of their properties rather than in the properties

themselves [3].

Also, over time, a mode can change. Originally signs were in part

iconic, in part indexical (primitive writing), and symbols come

into being by development out of other signs, particularly from

icons [3].

4.5 Sign Ontology construction
With the utilization of the Protégé 5.2.0 software tool and

according to semiotic concepts and their relationships, we created

simple Sign Ontology as follows. We created a class Sign (with

disjoint subclasses Icon, Index and Symbol), a class Relationship

(with subclasses PrimaryRelationship and SecondaryRelationship),

and a class BPMNElement (with subclasses BasicShape, Activity,

Event, Gateway, and Data). We also created 2 object properties:

hasRelationshipType (with subproperties hasPrimaryRelationshipType

and hasSecondaryRelationshipType), and its inverse property

definesModeOf (with subproperties definesPrimaryModeOf and

definesSecondaryModeOf). The range of hasPrimaryRelationshipType

is the class Sign, and the domain is the class PrimaryRelationship.

We then defined 3 instances, Arbitrary, Indicative and Similar,

and included them in the classes PrimaryRelationship and

SecondaryRelationship. Next, we defined that, if a Sign has a

hasPrimaryRelationshipType property of value Similar, it is

included in the class Icon. Similarly, we defined classes Index

(with hasPrimaryRelationshipType property value Indicative) and

Symbol (with hasPrimaryRelationshipType property value

Arbitrary).

4.6 BPMN graphical shapes as Instances in

Sign Ontology
To decide whether graphical signs in BPMN are of the mode icon,

index or symbol, we invited 5 BPMN experts to evaluate BPMN

signs and define one sign mode for each. We chose BPMN

experts as they are fully familiar with the concepts (signifieds) in

BPMN. Before the evaluation, the experts were acquainted with

concepts from semiotics. The results of the evaluation are given in

Table 2.

On six shapes, the experts agreed on the sign mode, thus defining

the primary relationship between signifier and signified. For other

shapes, where experts had different opinions, the mode was

defined with the primary and the secondary relationship. The

mode that was defined most often by experts was set for the

primary relationship, and the mode that ranked second in choices

was set for the secondary relationship.

As we can observe from Table 2, the majority of the signs were

specified as symbols (the primary relationship is arbitrary). 6

symbols were also the only signs where experts agreed fully on

the sign mode. Furthermore, in all but one symbols, the secondary

mode was set as an index, and, similarly, the other way around; in

all indices, the secondary mode was set as a symbol. The

consensus on the primary relationship was not possible for two

signs (Script task and Data object), and on the secondary

relationship for one sign (Manual task). Thus, for the Script task

and the Data object, the primary relationship was not set, but two

secondary relationships were set. For Manual task only the

primary relationship was set.

After the modes of signs were defined we included the signs into

Sign Ontology. The ontology, including the instances, is shown in

Figure 3. The figure represents classes as circles and relationships

as lines connecting the circles. The size of the circle corresponds

to the number of instances included in the class.

17

Table 2: Modes of BPMN signs

* Signifier Signified Secondary relationship

Primary relationship: Arbitrary (Symbol)

5

Activity

 Gateway

 Signal event

 Multiple event

 Ad-hoc sub-process

 Complex gateway

4

 Event Indicative (index)

 Parallel event Indicative (index)

 Escalation event Indicative (index)

 Link event Indicative (index)

 Service task Indicative (index)

 Inclusive gateway Indicative (index)

 Parallel gateway Indicative (index)

3

 Error event Indicative (index)

 Send task Indicative (index)

 Receive task Indicative (index)

 Business rule task Indicative (index)

 Sub-process Indicative (index)

 Exclusive gateway Indicative (index)

 Data object collection Similar (icon)

Primary relationship: Indicative (Index)

4

 Conditional event Arbitrary (symbol)

 Flow Arbitrary (symbol)

 Cancel event Arbitrary (symbol)

 Data store Arbitrary (symbol)

3 Compensation event Arbitrary (symbol)

Primary relationship: Similar (Icon)

4 Message event Indicative (index)

3
 Timer event Indicative (index)

 User task Arbitrary (symbol)

 Manual task Not set

Primary relationship: Not set

 Script task Similar/indicative (2*)

 Data object Similar/arbitrary (2*)

* - The number of experts who decided on this primary mode

Figure 3: Sign Ontology with BPMN shapes rendered in the

NavigOwl plugin for ProtégéCONCLUSION

In this paper, we mapped the linguistic terms from semiotics to

linguistic terms regarding signs in BPMN specifications. We

found that, in BPMN specifications, many terms are used for the

term signifier, some of which inconsistently.

To correlate concepts from semiotics to BPMN graphical signs,

we developed the BPMN Sign Ontology based on definitions

from semiotics. We categorized each BPMN graphical sign in a

mode that represents the relationship between signifier and

signified. The majority of the BPMN signs are of mode symbol,

following by mode index. As the meaning of symbols needs to be

learned, this indicates a possible correlation with the principle of

Semantic transparency from [10]. Addressing this issue, we will,

in future work, examine our results further with those from [11]

and other related articles.

Since the current study included only 5 experts in BPMN,

resulting in possible bias, empirical research with more users is

planned, as well as a thorough literature search. At this point, the

BPMN Sign Ontology can, in the BPMN domain, serve for

unambiguous knowledge definition and sharing.

5. REFERENCES
[1] M. Kocbek, G. Jošt, M. Heričko, and G. Polančič,

“Business process model and notation: The current state of

affairs,” Comput. Sci. Inf. Syst., vol. 12, no. 2, pp. 509–539,

2015.

[2] O.M.G., “Business Process Modeling Notation.” 2011.

[3] D. Chandler and E. W. B. Hess-Lüttich, Semiotics the

Basics, Second Edi., vol. 35, no. 6. London: Routledge,

2007.

[4] T. R. Gruber, “A translation approach to portable ontology

specifications,” Knowl. Acquis., vol. 5, no. 2, pp. 199–220,

Jun. 1993.

[5] N. F. Noy and D. L. McGuinness, “Ontology Development

101: A Guide to Creating Your First Ontology,” Standford

Knowl. Syst. Lab. Tech. Rep., pp. 1–25, 2001.

[6] L. Obrst, H. Liu, R. Wray, and L. Wilson, “Ontologies for

semantically interoperable electronic commerce,” IFIP Adv.

Inf. Commun. Technol., vol. 108, pp. 325–333, 2003.

[7] L. Cabral, B. Norton, J. Domingue, L. C. Kmi, B. Norton,

and J. Domingue, “The business process modelling

ontology,” Proc. 4th Int. Work. Semant. Bus. Process

Manag., pp. 9–16, 2009.

[8] A. Fenk, “Symbols and icons in diagrammatic

representation,” Pragmat. Cogn., vol. 6, no. 1–2, pp. 301–

334, 1998.

[9] G. R. Kress and T. van Leeuwen, Reading Images (The

Grammar of Visual Design). London: Routledge, 1996.

[10] D. Moody, “The physics of notations: Toward a scientific

basis for constructing visual notations in software

engineering,” IEEE Trans. Softw. Eng., vol. 35, no. 6, pp.

756–779, 2009.

[11] N. Genon, P. Heymans, and D. Amyot, “Analysing the

Cognitive Effectiveness of the BPMN 2.0 Visual Notation,”

in Journal of Visual Languages & Computing, vol. 22, no.

6, 2011, pp. 377–396.

18

Knowledge Perception influenced by Notation Used for
Conceptual Database Design

Aida Kamišalić
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

aida.kamisalic@um.si

Muhamed Turkanović
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

muhamed.turkanovic@um.si

Marjan Heričko
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

marjan.hericko@um.si
Tatjana Welzer

Faculty of Electrical
Engineering and Computer

Science
University of Maribor

Maribor, Slovenia
tatjana.welzer@um.si

ABSTRACT
The paper presents an experimental study which examined
the influence of the notation used for conceptual design on
students’ knowledge perception at higher educational study
level. The results demonstrate that students’ knowledge per-
ception is higher than actual knowledge throughout the en-
tire learning process and is correlated with the used nota-
tion.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design; K.3.2
[Computers and Education]: Computer and Information
Science Education

General Terms
Theory, Experimentation

Keywords
entity relationship models, conceptual design, database de-
sign learning, Barker, Bachman, knowledge perception

1. INTRODUCTION
The relational databases are fundamental part of any infor-
mation system. Conceptual and logical design represent im-
portant segment of almost every application. Therefore, dif-
ferent issues related to teaching approaches of database fun-
damentals and design must be adequately addressed. The
introduction to databases course is one of the fundamen-
tals of computer science and/or informatics higher educa-
tion programs. It is mostly a single semester course that
covers data requirements elicitation, conceptual database
design, normalization, logical database design, and physical
database design [3, 4, 5]. There is much research addressing
issues related to teaching computer science and informatics
disciplines including various aspects of databases [3, 5, 9],
some research has dealt with the effectiveness of teaching
approaches to database design (conceptual and logical mod-
eling) [1, 2, 7, 8]. However, to the best of our knowledge

there are no researches that dealt with knowledge percep-
tion within the databases learning environment. In order
to examine the effectiveness of learning database fundamen-
tals, depending on the notation used for conceptual design,
we set-up a multi-level experimental study [7]. Different
experimental instruments to evaluate the effectiveness of a
teaching approach using Barker or Bachman notation for
conceptual database design were developed. In contrast to
Barker notation, Bachman notation incorporates elements
of logical design (i.e. foreign keys) in the conceptual design
level. Students’ achievements were examined with regard
to influencing factors throughout the learning process. Re-
sults indicated that introducing the Bachman notation and
a manual transformation from a conceptual into a logical
data model increased students’ understanding of conceptual,
logical and relational data model concepts (CLR concepts).
Here we present another aspect of this study. The influence
of notation used for conceptual design on student knowl-
edge perception is examined. Research questions that are
addressed and answered in the paper are (RQ1) How does
the notation used for conceptual design influence students’
knowledge perception? and (RQ2) Does the correlation be-
tween student’s knowledge perception and actual knowledge
about CLR concepts change throughout the learning pro-
cess?
The structure of the paper is as follows. In Section 2, a
methodological framework and experimental setting are pro-
vided. The main contribution of the paper is presented in
Section 3 where results and discussion are detailed. Finally,
the conclusions are presented in Section 4.

2. METHODOLOGY
2.1 Experimental framework
The study was carried out during the academic year 2016/2017
at the Faculty of Electrical Engineering and Computer Sci-
ence at the University of Maribor. The experiment was per-
formed within the Database I course. It is a single semester
course that includes 45 hours of theory/practice lectures and

19

30 hours of laboratory work in the form of computer exer-
cises.

The focus of the experiment was on the evaluation of stu-
dents’ laboratory work. Students were randomly split into
two approximately equal size groups. Both groups worked
on the same database modeling tasks, using the Oracle SQL
Developer Data Modeler design tool. One of the groups used
Bachman notation which explicitly includes the foreign key
in the E-R diagram, while another group used the Barker
notation, which does not explicitly include the foreign key
in the E-R diagram [6].

2.2 Experimental instruments
In this section, a detailed presentation of the experimental
instruments used during the study is given. The question-
naire was conducted twice: Intro-Questionnaire and Final-
Questionnaire. The participation was optional in both oc-
currences. The questionnaire used in the study is available
on the web (http://bit.ly/2wMvrVQ).

The questionnaire is split into three parts. The first part
consists of mainly closed-ended questions related to basic
demographic information and database design tools (Ques-
tions 1 - 6). The second part consists of a Likert scale-like
multi-level table (Question 8), where participants have to
cross one of the multi-level options for five basic database
terms and concepts: Entity, Relationship, Attribute, Pri-
mary Key (hereinafter PK) and Foreign Key (hereinafter
FK). The values of the Likert scale are as follows: (1) - I am
not familiar with the term, (2) - I am familiar with the term,
but not with the meaning, (3) - Undefined, (4) - I am famil-
iar with the meaning but I do not know how to use it and (5)
- I am familiar with the meaning and I know how to use it.
The third part included open-ended questions, given in the
form of a short test (Question 9). The short test consists of
three consecutively simple tasks, whereby each is related to
the previous and each presents an increase in difficulty. In
order to solve the test correctly, the participants have to use
a form of one-to-many (hereinafter 1:N) and many-to-many
(hereinafter M:N) relationship. The participants should not
be given any instructions on how to solve the test. They
should be left to use any means and techniques that seem
appropriate. The foreseen time limit is 20 minutes.

The purpose of the questionnaire was to examine if there
was any correlation between the participant’s perception of
knowledge of CLR concepts (Question 8) and their actual
knowledge (score on the test questions 9a, 9b, 9c). When
the questionnaire was handed out the second time during the
experiment, an additional closed-ended question was added
to the first part (Question 7), whereby students were asked
which notation they used during the laboratory work. The
purpose of this particular question was to examine if there
was any correlation between the notation used during the
laboratory work and their knowledge (score on the test ques-
tions 9a, 9b, 9c).

In order to evaluate the questionnaire a scoring structure
for the third part is needed (Question 9). The test con-
sists of three consecutive tasks (9a, 9b, 9c), whereby each
relates to the previous and each constitutes an increase in
difficulty. In order to solve the first task (9a) correctly, the

participants have to model an entity (i.e. person) and give
it some attributes and possibly a primary key. For the sec-
ond task (9b), the participants have to model an additional
entity (i.e. phones) and present an 1:N relationship between
the previous entity and the newly added one. For the third
task (9c), the participants had to add a third entity (i.e. ad-
dress), and correctly use a form of M:N relationship between
the previous entities and the newly added one. In order to
be able to analyze the results, five concepts are evaluated:
entity, relationship, attribute, PK and FK. The scoring is
as follows: if they used any possible form of the concept in
their solution and if the presented use of the concept was
correct, participants got a point for the concept. Thus, five
points could be scored in total.

3. RESULTS AND DISCUSSION
In the next sections we report on the results achieved in the
experiment. Statistical analyses were performed using IBM
SPSS Statistics version 23.

3.1 Knowledge perception
An analysis was performed on related samples of the per-
ception score and test score. It was based on data gathered
from the Intro-Questionnaire and Final-Questionnaire. The
data for each questionnaire was analyzed separately.

In the analysis we excluded all those records where students
rated one of the concepts as undefined, thus the total num-
ber of records taken into account were 116. Therefore, we
got four levels of knowledge and five different concepts. As
mentioned in the previous section, part of the questionnaires
was a short test. We will refer to the total test score as
the test score. In order to effectively compare the actual
knowledge with the perception, we normalized the results
of knowledge perception so that the total score (max. 20
points) was divided by five. We will refer to the normalized
perception results as the perception score. Table 1 reports
on the results of the analysis which was performed using a
Wilcoxon signed-rank test for related samples.

Table 1: Correlation of results for perception score
and test score.

Experimental
instrument

Related
Samples

Asymp.
Sig.
(2-tailed)

N Decision

Intro-
Questionnaire

Percep. score
- Test score

0.000** 107
Reject the

null hypothesis

Final-
Questionnaire

Percep. score
- Test score

0.000** 116
Reject the

null hypothesis

**Significant at 1%

We used the Wilcoxon signed-rank test in order to compare
two not normally distributed sets of scores, one actual score
and another normalized perception score, that came from
the same participants, since each participant had to solve
tasks and evaluate their knowledge on the aforementioned
CLR topics. The Shapiro-Wilk test of normality indicated
that data significantly deviates from a normal distribution
(p-value below 0.05). The Wilcoxon signed-rank test returns
an asymptotic significance lower than 0.01, thus rejecting
the null hypothesis for related samples. The null hypothesis

20

http://bit.ly/2wMvrVQ

states that the median of difference between the perception
score and the test score will equal zero. There is a statisti-
cally significant difference between the perception score and
the test score, suggesting that students’ perception of their
knowledge is not in accordance with their actual knowledge
on CLR concepts. Figures 1 and 2 depict the correlation be-
tween students’ actual knowledge and their knowledge per-
ception, which indicates a higher knowledge perception than
the actual knowledge in both questionnaires. The results
indicate that the correlation between the knowledge percep-
tion and actual knowledge is corrected by the end of the
course (Final-Questionnaire), which is due to higher knowl-
edge achieved by the end of the course. However, the knowl-
edge perception remains at a high level.

Figure 1: Correlation between students’ actual
knowledge and their knowledge perception. Intro-
Questionnaire (course start).

Figure 2: Correlation between students’ actual
knowledge and their knowledge perception. Final-
Questionnaire (course end).

Table 2 reports on the ranks of the performed Wilcoxon
signed-rank test. There were 100 out of 107 participants at
the Intro-Questionnaire who assessed their knowledge higher
than their actual knowledge was. On the contrary, only two
participants reached the opposite results and only five as-
sessed their knowledge correctly. The Final-Questionnaire
results showed a slight increase in correctly assessed knowl-
edge. There were 100 out of 116 participants at the Final-
Questionnaire who assessed their knowledge as being higher
than their actual knowledge was. On the contrary, only one

participant reached the opposite result, while 15 assessed
their knowledge correctly. A further indication of wrong
knowledge perception can be deduced from the mean of the
scored results. The mean of the perception score during
the Intro-Questionnaire is 4.095, while the mean for the test
score stood at 1.74. In addition, the means for the Final-
Questionnaire were 4.957 and 3.35, respectively. We con-
clude that students overestimated their knowledge of CLR
concepts throughout the entire course.

Table 2: Cases of knowledge perception scores ver-
sus actual knowledge scores.

Experimental
instrument

Related
Samples

N
Mean
Rank

Sum of
Ranks

Intro-
Questionnaire

Percep. score
- Test score

Negative
Ranks

2 a 17.25 34.5

Positive
Ranks

100 b 52.19 5218.5

Ties 5 c

Total 107

Final-
Questionnaire

Percep. score
- Test score

Negative
Ranks

1 a 1 1

Positive
Ranks

100 b 51.5 5150

Ties 15 c

Total 116

a Perception score <Test score

b Perception score >Test score

c Perception score = Test score

Conclusions regarding RQ2: Students overestimated their
knowledge of CLR concepts throughout the entire course.
The correlation between the students’ knowledge perception
and actual knowledge is corrected by the end of the course,
due to higher knowledge reached by the end of the course.
However, the knowledge perception remains at a high level.

3.2 Knowledge perception and notation
Additionally, we analyzed the results of the students’ knowl-
edge perception and actual knowledge considering the nota-
tion used in the learning process. Normalized results of stu-
dents’ self-assessment of their knowledge and results of our
assessment of their knowledge was summarized and used to
assess the students’ perception of knowledge in terms of the
dependence of the notation. The range of the summed score
is thus 1 - 10. As the summed score approaches the extremes,
the students were better able to assess their knowledge. It
means that their perception of their knowledge and their ac-
tual knowledge were very close. On the contrary, the closer
the results were to the middle, the more students incorrectly
assessed their knowledge. It means that they either overes-
timated or underestimated it. For example students could
assess their knowledge as high and reach five points for the
perception and also score all five points on the test, thus
collecting ten points. On the contrary, students could assess
their knowledge as high, but reach a minimum or even none
points on the test, thus scoring five points in total. The
analysis of the impact of the notation was based on the data
gathered from the Final-Questionnaire only, because the im-
pact of the notation can only be seen after the notation was
used in the learning process. Table 3 reports on the re-
sults of the Mann-Whitney U test for independent samples.
We used the Mann-Whitney U test in order to compare dif-
ferences between two independent groups (students using

21

Table 3: Correlation of summed perception and test
score and influencing factor (notation used).

Exper.
instr.

Independ.
variable

Depend.
variable

N
Asymp.
Sig.

Decision

Final-
Quest.

Notation

Summed
perc.

and test
score

116 0.008** Reject the
null hypothesis

*Significant at 5%; **Significant at 1%

Bachman or Barker notation) and the dependent variable
(students’ summarized test score and normalized perception
score), while the groups are not normally distributed. The
Shapiro-Wilk test of normality indicated that data signifi-
cantly deviates from a normal distribution (p-value below
0.05).

The Mann-Whitney U test returns an asymptotic signifi-
cance lower than 0.01 for the notation variable, therefore
rejecting the related null hypothesis. The null hypothesis
states that the distribution of the summed score is the same
across categories of both Bachman and Barker notations.
Considering the results, there is a statistically significant dif-
ference between the summed results scored by notation used
in the learning process. There were 68 out of 116 students
who used the Barker notation during the learning process,
and their summed mean score stood at 8.1. The Bachman
notation was used by 48 students, whereby their summed
mean score was 8.608. According to Figure 3, it is evident
that there were more students who used the Bachman nota-
tion and better assessed their knowledge.

Figure 3 depicts the correlation between the summed per-
ception score and test score, and the notation used during
the learning process.

Figure 3: Summed perception score and test score in
correlation with the notation used during the learn-
ing process.

On the contrary, there were students who used the Barker
notation with a summed score of five which indicates the
worst assessment of knowledge. We conclude that students
who used the Bachman notation in the learning process bet-
ter evaluated their knowledge than students who used the
Barker notation.

Conclusions regarding RQ1: Bachman notation posi-
tively influences students’ ability of knowledge self-assessment.
By the course’s end, the difference between knowledge per-
ception and actual knowledge lowers.

4. CONCLUSIONS
The paper reported on the results of an experimental study
aimed at analyzing the influence of notation used for the
conceptual design on students’ knowledge perception. The
study continues on the work already presented in [7], while
reporting on students’ knowledge perception being higher
than the actual knowledge.

We examined whether students’ perception of knowledge is
in accordance with their actual knowledge of CLR concepts.
The results confirm that their perception is higher than the
actual knowledge throughout the entire learning process. By
the end, their knowledge increases and perception remains
at a similar level as at the beginning. Additionally, the re-
sults prove that students who used the Bachman notation
during the learning process were able to better estimate their
knowledge. In the future we plan to analyze the correlation
between students’ educational background and their success
rate while learning the CLR concepts on the higher educa-
tion degree level.

5. ACKNOWLEDGMENTS
The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No. P2-
0057).

6. REFERENCES
[1] A. Al-Shamailh. An Experimental Comparison of ER

and UML Class Diagrams. International Journal of
Hybrid Information Technology, 8(2):279–288, 2015.

[2] H. C. Chan, K. K. Wei, and K. L. Siau. Conceptual
level versus logical level user-database interaction. In
ICIS 45. Proceedings, pages 29–40, 1991.

[3] T. M. Connolly and C. E. Begg. A
Constructivist-Based Approach to Teaching Database
Analysis and Design. Journal of Information Systems
Education, pages 43–53, 2005.

[4] R. Dargie and A. Steele. Teaching Database Concepts
using Spatial Data Types. In In Proceedings of the 4th
annual conference of Computing and Information
Technology Research and Education New Zealand, pages
17–21, 2013.

[5] C. Domı́nguez and A. Jaime. Database design learning:
A project-based approach organized through a course
management system. Computers & Education,
55(3):1312–1320, 2010.

[6] D. C. Hay. A comparison of data modeling techniques.
Essential Strategies, Inc, pages 1–52, 1999.

[7] A. Kamǐsalić, M. Heričko, T. Welzer, and
M. Turkanović. Experimental Study on the
Effectiveness of a Teaching Approach Using Barker or
Bachman Notation for Conceptual Database Design.
Computer Science and Information Systems,
15(2):421–448, 2018.

[8] H. C. Purchase, R. Welland, M. McGill, and
L. Colpoys. Comprehension of diagram syntax: an
empirical study of entity relationship notations.
International Journal of Human-Computer Studies,
61(2):187–203, 2004.

[9] S. D. Urban and S. W. Dietrich. Integrating the
Practical Use of a Database Product into a Theoretical
Curriculum. SIGCSE Bull., 29(1):121–125, 1997.

22

The Use of Standard Questionnaires for Evaluating the
Usability of Gamification

Alen Rajšp
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

alen.rajsp@um.si

Katja Kous
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

katja.kous@um.si

Tina Beranič
Faculty of Electrical

Engineering and Computer
Science

University of Maribor
Maribor, Slovenia

tina.beranic@um.si

ABSTRACT
Usability has a significant impact on the satisfaction and
frequency of use of a designed system. Nowadays, gami-
fication and serious game approaches are implemented in
software solutions to increase their usability. We present a
literature review of 32 identified studies measuring usability,
with established questionnaires in gamified systems and se-
rious games. We identified 18 different questionnaires used
for measuring usability, and found System Usability Scale
to be the most widely used. An immense issue exists in the
field, with only 22% of studies measuring usability actually
describing or defining what usability is.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: User-centered design

General Terms
Measurement, Experimentation, Standardization, Theory,
Verification

Keywords
Usability Evaluation Method, Formal Questionnaires, Gam-
ification, Serious Games

1. INTRODUCTION
In recent years, gamification has become an essential part
of varieties of domains, from Education to Medicine. It is
used for facilitating the use of developed products. They
cannot achieve its purpose if the usability of the product is
inadequate. Therefore usability evaluation should present a
crucial step of development.

Solutions utilising (1) gamification or (2) serious game ap-
proach should be evaluated separately, due to them being
inspired by games which have very specific (and different)
natures. The primary function of games is to entertain
through experience whereas serious games and gamification
have some intended useful purpose [10]. Because gamifi-
cation and serious games’ approaches utilise elements from
games, this leads to solutions where even other needs of so-
lutions intended for an audience are being met to varying
degrees. In solutions this causes an increase of user satisfac-
tion.

In the web area of expertise, only 18% of the reviewed pa-
pers in [7] present usability evaluation methods relying on

the standardised definitions of usability. Fernandez et al. [7]
found that 59% of the reviewed papers reported end-user-
based usability testing, while 35% of the reviewed papers
used the inquiry methods (such as focus group, interviews,
questionnaires and surveys). Based on these facts, this re-
search focuses on inquiry methods, more specifically on tech-
nique questionnaires, and investigates which standard ques-
tionnaires are used most commonly for usability evaluation
in The Gamification domain. Within the presented paper,
we focus on the research question: Which standard question-
naires are used for evaluating the usability of gamification?
Using a literature review, we study the use and popularity
of established usability questionnaires in the Gamification
domain.

A similar study, made by Yáñez-Gómez et al. [18], presents
the review of academic methods for usability evaluation of
serious games. The scope of the study is broader, aiming at
finding the preferred approach for evaluating the usability
of games. As the results show, standard questionnaires are
the second most used technique applied in post-use analysis
[18]. They mention three questionnaires in use, but detailed
analysis is not provided. Also, in comparison to the pre-
sented study, our search string differs. Another review is
presented by Calderón and Ruiz [5], also covering the do-
main of Serious Games’ Evaluation. One of the research
questions concerned evaluation techniques, and discovered
that questionnaires are the most commonly used, but the
categorization or detailed analysis of the used questionnaires
was not provided.

The paper is structured as follows. We start by presenting
the research background covering usability evaluation and
gamification, we continue by presenting and discussing the
results of the literature review. We close our paper by pre-
senting the conclusions reached by our review.

2. USABILITY EVALUATION
The term usability represents a combination of several prop-
erties and attributes [13]. Regardless of the variety of def-
initions by different authors [1, 3, 9, 13, 15, 17], Jeng [12]
states that Nielsen and ISO 9241-11 definitions are the most
widely cited. ISO 9241-11 defines usability as “the extent to
which a product can be used by a specified user to achieve
specified goals with effectiveness, efficiency and satisfaction
in a specified context of use” [11], while Nielsen [15] defines

23

usability as an aggregation of five attributes: Learnability,
efficiency, memorability, errors and satisfaction.

The usability evaluation method is defined as “a procedure,
composed of a set of activities for collecting usage data re-
lated to end user interaction with a software product, and/or
how the specific properties of this software product con-
tribute to achieving a certain degree of usability” [7]. Ac-
cording to Battleson et al. [2], the usability evaluation meth-
ods are classified into three categories: (1) Inquiry methods
(such as focus group, interviews, questionnaires and sur-
veys), (2) Formal usability testing (such as interactions with
a website by performing tasks) and (3) Inspection methods
(such as heuristic evaluation, cognitive walk-through, plu-
ralistic walk-through and formal inspection). The first two
categories involve real-users, while inspection methods are
based on reviewing the usability aspects of web artifacts,
which have to comply with established guidelines, and are
performed by expert evaluators or designers [7].

3. GAMIFICATION
Gamification is the use of design elements characteristic for
games in non-game contexts [6]. Gamification should not be
confused with serious games. Whereas the goal of introduc-
ing gamification is influencing learning related behaviuors
and attitudes without providing knowledge, the use of seri-
ous games should influence learning and provide knowledge
by the experience itself [14]. Another way to compare gam-
ification and serious games is that gamification represents
using only parts (game elements) from games, while serious
games represent the whole immense gaming experience [6].

4. EVALUATING THE USABILITY OF
GAMIFICATION

4.1 Research
Our research aims to find available standard questionnaires
used for evaluating the usability of gamification. Using the
following search string ”usability” AND (”gamification” OR
”serious games” OR ”educational games”) we conducted a
search in the following digital libraries: ScienceDirect, IEEE
Xplore, ACM Digital Library and Sage journals. Deter-
mined inclusion and exclusion criteria guided the study se-
lection process. We considered the papers evaluating us-
ability with the help of established and well-known ques-
tionnaires. Therefore, we excluded primary studies using
ad-hoc questionnaires.

After the review process, we selected 33 primary studies.
The list of primary studies we used as input into the data ex-
traction and data synthesis step is available at: https://tiny
url.com/CSS2018-IJS. 26 out of 33 primary studies are con-
ference papers, whereas seven papers are journal articles.
Figure 1 shows the number of primary studies by year of
publishing. We selected 23 primary studies from the IEEE
Xplore digital library, six from the ACM Digital Library,
three from ScienceDirect and one from Sage journals.

4.2 Results
Within data extraction, we focused on two main areas. First,
we searched for used definitions of usability, since the lat-
ter was evaluated in the analysed studies. Extracted data

Figure 1: Primary studies by years

from selected primary studies showed that only seven pri-
mary studies (22%) defined and described the term of us-
ability. Two of them indicated usability as a concept (S5,
S10), while five researches treated usability as construct,
namely two studies (S11, S21) used Nielsen’s definition, one
research (S4) used the ISO definition, one research (S18) de-
scribed usability as “ease of use of the game”, while study
S25 defined usability similar to ISO, but expanded the defi-
nition with two new concepts (“simple” and “operating with
ease”). The remaining studies (78%) used the term usability
without providing the meaning of usability.

Studies are classified by domain in Table 1. Over half (56%)
of all studies were from the field of Health and Medicine.
Most of the studies from the domain addressed (1) Training
of health care personnel (S8, S17, S18), (2) Rehabilitation
and exercise for patients (S3, S6, S7, S16) and (3) Assessing
patients (S1). The second most popular domain (37%) was
Education and Learning. All other identified domains had
only 1 study per domain.

Domain Primary studies

Agriculture S27

Business Intelligence S5

Computer Science S5

Education & Learning S2, S8, S10, S13, S14, S16, S17,
S18, S23, S28, S29, S31

Entertainment S4

Health & Medicine S1, S3, S6, S7, S8, S11, S12,
S16, S17, S18, S19, S20, S21,
S22, S24, S29, S30, S32

Social Science S25

Task Management S9

Travel S15

Table 1: Domain

We continued the data extraction by identifying standard
questionnaires used for usability evaluation. We followed
the explanation provided by Yáñez-Gómez et al. [18], which
states that standard questionnaires are the ones that are
validated statistically. Table 2 presents used questionnaires
in connection with primary studies. The majority of stud-
ies evaluated usability by using the System Usability Scale

24

(SUS). It was used in 78% of primary studies. Although
Technology Acceptance Model (TAM) is used in the model-
driven analysis for measurement of users’ acceptance and us-
age of technology and it is not classified as a standard ques-
tionnaire for usability evaluation, it was used for assessment
of gamification in four primary studies. On the other hand,
Game Experience Questionnaire (GEQ), Task Load index
(TLX), Game Engagement Questionnaire (GEQ), Post-Study
System Usability Questionnaire (PSSUQ) and Net Promoter
Score (NPS) are each used in two primary studies. We ex-
tracted other questionnaires that are used only in one pri-
mary study, such as Presence Questionnaire (PQ) and Soft-
ware Usability Measurement Inventory (SUMI). To achieve

Questionnaire Primary studies

System Usability Scale
(SUS)

S1, S3, S6, S7, S10, S11,
S12, S14, S16, S17, S18,
S19, S20, S21, S22, S23,
S24, S25, S26, S27, S28,
S29, S30, S31, S32

Technology Acceptance
Model (TAM)

S2, S3, S11, S20

Game Experience Ques-
tionnaire (GEQ)

S1, S4, S30

Task Load index (TLX) S1, S22

Game Engagement
Questionnaire (GEQ)

S11, S18

Post-Study System Us-
ability Questionnaire
(PSSUQ)

S8, S15

Net Promoter Score
(NPS)

S31-S32

User Engagement Scale
(UES)

S5

Computer System Us-
ability Questionnaire
(CSUQ)

S13

Software Usability Mea-
surement Inventory
(SUMI)

S7

Intrinsic Motivation In-
ventory (IMI)

S16

User Interaction Satis-
faction (QUIS)

S18

Presence Questionnaire
(PQ)

S10

Usefulness, Satisfaction,
and Ease of use (USE)
Questionnaire

S9

Pick-A-Mood (PAM) S10

Technology Affinity
- Electronic Devices
(TA-ED) Questionnaire

S20

Game User Experience
and Satisfaction Scale
(GUESS)

S19

Differential Emotions
Scale (DES)

S10

Table 2: Standard questionnaires in use

a comprehensive usability evaluation, it is crucial that mea-
surement instruments used are utilised appropriately accord-
ing to the attribute they are measuring. 41% (13/32) of
primary studies (S6, S12, S17-S19, S25-S30, S32) used the

most established questionnaire SUS for measuring usability,
but did not define the measured attribute in their research.
Table 3 presents the connection between the used question-
naires and measured attributes that were measured at least
in two primary studies. The most frequently measured at-
tributes were ”ease of use” and ”usability” and both were
used in six primary studies. In all cases, the attribute ”us-
ability”, was measured with SUS, while the attribute ”ease
of use” was measured with three different questionnaires:
SUMI (S7), USE (S9) and TAM (S2, S3, S11, S20). The
second most frequent measured attribute was attribute ”use-
fulness”. In three primary studies (S2, S11, S20), it was
treated and determined as one of the two factors defined in
TAM, while, in one case, it was measured with USE (S9) and
PSSUQ (S15). The attribute ”satisfaction” was the third
most commonly used attribute measured by two different
questionnaires: SUS (S21, S22, S31) and USE (S9).

Measured attribute Questionnaires

Ease of use SUMI (S7), USE (S9),
TAM (S2, S3, S11, S20)

Usability SUS (S10, S11, S16, S23,
S24, S31)

Usefulness TAM (S2,S11,S20), USE
(S9), PSSUQ (S15)

Satisfaction USE (S9), SUS
(S21, S22, S31)

Flow GEQ (S1, S4, S11)

Learnability SUMI (S7), USE (S9)

Competence GEQ (S1, S4)

Overall CSUQ (S13), SUMI (S7)

Quality of Information CSUQ (S13), PSSUQ (S15)

Quality of interface CSUQ (S13), PSSUQ (S15)

Table 3: Connection between the measured at-
tributes and used questionnaires

The most popular devices on which developed/proposed so-
lutions were run were computers (62%), virtual reality equip-
ment (22%) and mobile devices (16%) as seen in Table 4.

Device Primary studies

Computer S1, S2, S4, S5, S6, S7, S8, S10,
S11, S13, S14, S16, S21, S22,
S23, S25, S26, S28, S29, S31

Customised system S19

Mobile device S9, S12, S15, S20, S27

Smart TV S3

Virtual reality S10, S15, S17, S18, S24, S30, S32

Table 4: Devices on which the studied system runs

4.3 Discussion
An extensive collection of standard questionnaires were found
for evaluating the usability of gamification, with System Us-
ability Scale (SUS) as the prevailing choice (84% of all stud-
ies). Since SUS is a well-known questionnaire, which is easy
to perform and analyse, this is not a surprise. As SUS was
developed for providing a subjective assessment of usability
[4], its extensive use is even more understandable. The ma-
jority of researchers that used SUS in their studies did not

25

quote explicitly which attribute of usability was measured;
the remaining studies, where the SUS were used, defined two
different attributes that can be measured with SUS. The
first attribute was ”usability” and it is in accordance with
description of SUS usage purpose [4], while the second one
was ”satisfaction”, which is recommended by the ISO/TS
20282-2:2013 [8] Standard, where the SUS is defined as a
questionnaire for measuring satisfaction.

Another aspect is also if standard usability questionnaires
can evaluate the usability of gamification adequately. She-
gawa et al. [16] claims that the SUS questionnaire is a veri-
fied instrument for measuring usability in the Serious Games
domain. Technology Acceptance Model (TAM) is widely
used in the Information System domain to investigate how
accepted the use of technology is among their target users.
Although it is not classified as a standard questionnaire for
usability evaluation, but rather as a model combining con-
structs ease of use and usefulness, it was the second most
used measuring instrument for usability evaluation in re-
viewed literature. On the other hand, it is also seen that
questionnaires, like Game Experience Questionnaire (GEQ)
and Game Engagement Questionnaire (GEQ), that originate
from Gaming domain, are nowadays used to evaluate the us-
ability of gamification. Therefore, the fusion of two fields is
perceived.

5. CONCLUSION
The paper presents conducted literature review which was
aimed at finding standard questionnaires used for usabil-
ity evaluation of gamification and serious games. We found
that the majority (84%) of studies evaluate usability using
a System Usability Scale (SUS), though some other ques-
tionnaires were also detected and used independently, or in
combination with SUS. We, as prospective researchers, can
determine only in a minority of cases what primary studies
were measuring, because only 22% of primary studies mea-
suring usability defined or described what usability is. That
is an immense issue on validity of their measurements of us-
ability, since multiple definitions of it exist. We propose that
methods for measuring usability in the field of Gamification
and Serious Games should be formalised in the future. Al-
though researchers are already using standardised methods
for measuring usability, research should also present what
usability means for them, what they are measuring.

6. ACKNOWLEDGMENTS
The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No. P2-
0057).

7. REFERENCES
[1] A. Abran, A. Khelifi, W. Suryn, and A. Seffah.

Usability meanings and interpretations in iso
standards. Information and Software Technology.,
11(4):325–338, Aug 2003.

[2] B. Battleson, A. Booth, and J. Weintrop. Usability
testing of an academic library web site: A case study
use of academic library web. J. Acad. Librariansh.,
27(3):325–338, 2001.

[3] T. Brinck, D. Gergle, and S. D. Wood. Designing Web
Sites that Work: Usability for the Web. Morgan

Kaufmann, San Francisco, 2002.

[4] J. Brooke. Sus: A quick and dirty usability scale, 1996.

[5] A. Calderón and M. Ruiz. A systematic literature
review on serious games evaluation: An application to
software project management. Computers &
Education, 87:396–422, 2015.

[6] S. Deterding, D. Dixon, R. Khaled, and L. Nacke.
From game design elements to gamefulness: Defining
gamification. Proceedings of the 15th International
Academic MindTrek Conference on Envisioning Future
Media Environments - MindTrek ’11, pages 9–11,
2011.

[7] A. Fernandez, E. Insfran, and S. Abrahão. Usability
evaluation methods for the web: A systematic
mapping study. Inf. Softw. Technol., 53(8):789–817,
Aug 2011.

[8] I. O. for Standardization. ISO/TS 20282-2:2013
Usability of consumer products and products for
public use - Part 2: Summative test method, 2013.

[9] E. Furtado, J. J. V. Furtado, F. Lincoln Mattos, and
J. Vanderdonckt. Improving usability of an online
learning system by means of multimedia,
collaboration, and adaptation resources. In Usability
Eval. Online Learn. Programs, pages 69–86, October
2003.

[10] C. Girard, J. Ecalle, and A. Magnan. Serious games as
new educational tools: how effective are they? A
meta-analysis of recent studies. Journal of Computer
Assisted Learning, 29(3):207–219, 2013.

[11] ISO. Standard 9241: Ergonomic Requirements for
Office Work with Visual Display Terminals (VDT)s,
Part 11. Guidance on Usability. 1998.

[12] J. Jeng. What is usability in the context of the digiral
library and how can it be measured? Information
Technology and Libraries, 24(2):47–56, Nov 2005.

[13] Z. Kılıç Delice, Elif Güngör. The usability analysis
with heuristic evaluation and analytic hierarchy
process. Int. J. Ind. Ergon., 39(6):934–939, Nov 2009.

[14] R. N. Landers. Developing a Theory of Gamified
Learning: Linking Serious Games and Gamification of
Learning. Simulation & Gaming, 45(6):752–768, 2014.

[15] J. Nielsen. Usability Engineering. Academic Press, San
Diego, 1993.

[16] R. Shewaga, A. Uribe-Quevedo, B. Kapralos, K. Lee,
and F. Alam. A Serious Game for Anesthesia-Based
Crisis Resource Management Training. Entertainment
Computing, 16(2):6:1–6:16, apr 2018.

[17] G. Tsakonas and C. Papatheodorou. Exploring
usefulness and usability in the evaluation of open
access digital libraries. Information Processing &
Management, 44(3):1234–1250, May 2008.

[18] R. Yáñez-Gómez, D. Cascado-Caballero, J.-L. J.-L.
Sevillano, R. Yanez-Gomez, D. Cascado-Caballero,
and J.-L. J.-L. Sevillano. Academic methods for
usability evaluation of serious games: a systematic
review. Multimedia Tools and Applications,
76(4):5755–5784, Feb 2017.

26

Analyzing Short Text Jokes from Online sources with
Machine Learning Approaches

Samo Šimenko
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia
samo.simenko@student.um.si

Vili Podgorelec
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia
vili.podgorelec@um.si

Sašo Karakatič
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia
saso.karakatic@um.si

ABSTRACT

This paper presents the whole data mining process of analyzing

jokes in Slovenian language gathered from various online sources.

The gathering was done with the help of web scrapping system and

the analysis was carried out on the gathered jokes to determine the

properties of various types of jokes. In addition, with the help of

various text-mining methods, we analyzed different types of jokes

and built a machine learning model for classifying jokes into

categories. These results are supplemented with the visualization of

different categories and the interpretation of constructed machine

learning classification models.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;

I.2.m [Artificial Intelligence]: Miscellaneous;

General Terms

Machine Learning, Data Mining, MDS, SVC

Keywords

Data mining, Machine Learning, Joke analysis, Short text analysis,

Text mining

1. INTRODUCTION
Due to the ever-advancing technology, opportunities are

opening for analyzing all types of data, so we can make the most

of this and use it for our benefit. By studying and examining various

types of texts, scientists were already involved in the initial phases

of textual analysis [8, 9, 10], but studying the meaning and

connection of texts presents a rather new direction of research,

where there is still a lot of room for improvement. While there has

been a lot of work done on various short text types, i.e. tweets [12],

reviews [11], recipes [13] and others, there is a lack of research

published on the topic of jokes analysis.

In our paper, we present a process of gathering, parsing and

pre-processing jokes and applying various data- and text-mining

techniques to extract patterns and new knowledge from jokes data.

By semantic text processing, we identify more than just a sequence

of symbols, we can assign them meaning, which can influence the

classification of jokes. In our case, we undertook the processing of

various jokes that we analyzed in order to determine how the

categories of such texts are interconnected by their content and find

out which categories of jokes share the most similar content. Based

on the texts, we created a classification model for the classification

of jokes into predefined categories.

The rest of the paper is structured in the following way. The

following section presents the method for gathering and parsing

jokes from the online sources. Third section presents the individual

steps of data- and text- mining in details. It consists of machine

learning method description, applications and techniques used in

the process and the results itself. We finish up with the conclusion

and the discussion on the topic of joke analysis with various data

mining methods.

2. GATHERING AND PARSING OF THE

JOKES FROM THE ONLINE SOURCES
In order to fulfill the set goals of analyzing jokes, we obtained these

from various sources. Three different sources were used:

– From the first source, a web site called VERZIVICI [2], joker

already classified into categories;

– Jokes from the second source NAJVICI [3];

– Jokes from a third source MLADINSKI [4].

For the data acquisition we developed a program in the Visual

Studio IDE, using the C# programming langauge, which acquired

jokes from the selected sources and saved them in a suitable text

format. Due to the unstructured data of selected web resources, we

used HAP (HTMLagilityPack) for processing. HAP is a HTML

parser written in C# for reading/writing the DOM (Document

Object Model) and supports plain XPATH or XSLT [1]. Using the

HAP library and XPATH, we could easily access individual

sections, which contained content known as a “joke”.

Jokes from VERZIVICI, which were categorized when gathered,

were manually entered, since the program for collecting jokes from

different categories used the category name in the creation of a

URL, which is used for scrolling between categories. For

NAJVICI, we manually created a URL for gathering jokes so we

can easily access all jokes on the site.

On the website MLADINSKI, jokes were already grouped and the

jokes were sequentially recorded on one side of the web page. For

the purpose of processing and subsequent manipulation, a simple

VIC class was created, which contains two textual attributes of Text

and Category. Both attributes can store values in string format, Text

attribute is for raw text of a joke, Category is for type of category

in which joke is categorized. When we were capturing blank

spaces, we encountered redundant badges before text and between

texts. Also, unreadable machine records were created instead of

symbols due to coding. All badges with associated symbols and

non-nominal groups of words, which were created instead of

symbols, were manually entered into the program and then

programmatically removed.

As a result of obtaining and processing the data from the selected

sources, we received the data, which are used as the basis below:

– VERZIVICI [2] – 13 categories, a total of 1729 jokes,

27

– NAJVICI [3] – a total of 297 jokes, and

– MLADINSKI [4] – a total of 145 jokes.

We have saved the acquired data in the CSV format. Due to the

characteristics of the CSV format, the comma symbol "," was

changed to the XX symbol, addressed below, because comma in

CSV represents a separator between lines, in jokes commas can

have different meaning. All of the jokes were in Slovenian

language, so this had to be taken into consideration during the text

analysis.

3. DATA ANALYSIS
In this section, we will present the methods and techniques for

analyzing the jokes and the results of these analysis. The whole

process of cleaning, preprocessing, and the analysis itself was done

with the Python programming language, and its libraries.

3.1 Cleaning and preprocessing the data
As mentioned, we use the Python programming language to process

data in which you can simply import information in a CSV format

using the Pandas library [5]. Pandas is an open source, BSD-

licensed library providing high-performance, easy-to-use data

structures and data analysis tools for the Python programming

language [5, 14]. The imported data is then appropriately structured

using the DataFrame class with the following columns (attributes):

– Index,

– Category, and

– RawText.

The XX symbols are also removed and replaced with the comma

symbol ",". From the text, we also removed stop-words, which is a

list of common words that do not carry any semantic meaning and

information. Stop words occurred in texts in high frequency but are

of little significance and consequently uninteresting. A sample of

stop words in Slovenian language are the following:

“in” (En. and), “ali” (En. or),

”je”(En. is), ”za” (En. for),

”to” (En. this), ”na” (En. on),

”to” (En. this), ”ti” (En. you),

”ko” (En. when), ”bi” (En. would),

”ne” (En. no), ”da” (En. yes),

”že” (En. already), ”le” (En. only).

In addition, the punctuations were removed, so the resulting text

was in the form of one sentence without most common stop words.

From the resulting text, we built a representation of every joke in

the format appropriate for the analysis. We used the method of

counting the frequency of individual words called word frequency.

This number was normalized by the word frequency of the word in

all categories, so the more common words got the lower score and

the less common and maybe unique words got higher score. This

process is called tf-idf (term frequency-inverse document

frequency) and is a common word scoring method in text mining

[17]. The new dataset was built in such way, that all of the identified

words represented one attribute of the joke, and the corresponding

value of that attribute is the tf-idf score of that word in that joke.

3.2 Classification of jokes in the

predetermined categories
We used the classification machine learning technique in order to

construct a model of classification that would learn how to classify

yet unseen jokes to one of the predetermined categories. This can

be useful if one would want to automate joke categorization on an

online joke portal without any need for human intervention. The

classification is a supervised machine learning method, which

means that machine learns to classify jokes from the already solved

(classified) examples [15].

There are numerous different classification algorithms [18], but for

our case we used the Support Vector Machine (SVM) classifier,

developed by Vapnik in 2000 [16]. This method learns the

boundaries that separate instances (jokes in our case) from one

category to another, by finding a linear separation border called

hyper-plane that has a maximum distance from the entire instance

set, which is called the maximum margin. The instances that are

closest on the hyper-plane (on the hyper-plane itself) are called

support vectors. This SVM method also uses a kernel trick [19],

which maps the attribute space of the classification instance to a

higher dimensional space. In our case, we used a linear kernel,

which uses a liner function to transform the attributes in such a way,

that the margin of the hyper-plane is maximized.

We used the implementation of SVM from the library liblinear [20],

which has high flexibility in the choice of penalties and loss

functions and should scale to large numbers of samples. This library

supports both dense and sparse input and the multiclass support is

handled according to a one-vs-the-rest scheme [6].

Upon preliminary data preparation, the whole joke dataset is

divided into train and test sets, where the training set is used to build

the SVM classification model, and the test set is used to test the

quality of the model – the ability to correctly classify yet unseen

jokes. In our experiment, we applied stratified sampling to split the

data and used 60% of data for training test and the rest 40% for the

test set. The results of the experiment show, that the resulting

classification model classifies test jokes with 61% accuracy. The

classifier has correctly classified more than half of jokes into their

proper category out of 13 possible categories.

The default classification of instances in one of 13 categories would

result in only 0.08 accuracy, so our resulting classifier improves the

default classifier significantly. This represents a high percentage of

precision as was not foreseen at first glance. Additionally, we also

manually examined some of the jokes that were misclassified.

Interestingly, although the predicted categories were not correct,

several of the examined jokes would fit well into the predicted

category as well, as the semantics of a joke is not always

monolithic.

3.3 Word frequency analysis and

visualization
From the dataset of jokes, with attributes of individual word’s tf-

idf scores, we built word cloud diagrams for every category of the

joke. The word clouds were made with the help of libraries

matplotlib [21] and wordcloud for the Python programming

language. In the word cloud, the most common words (or rather

those with higher tf-idf scores) are written in larger font, while

those with lower frequency (lower tf-idf scores) are written in

smaller font. The color of the words only serves to make words

more differentiable and thus improves the readability of word

clouds.

Also, these word cloud show which highly informative words (non-

stop words) are common for each category and can be used for

manual classification, this way we can check whether a joke, which

reads: “pride nekega dne k janezkovemu očetu domov nek njegov

nadležen prijatelj tone potrka vpraša dober dan oče doma janezek

tone ja kje janezek vem grem vprašat” was appropriately classified

into a category (the original category is called “janezek”, “Solski”

was predicted). As we can see in Figure 1, our model correctly

decided to classify the joke in the category “Solski”, because the

28

word “janezek” prevails in this category and is the dominant word

in the content of the joke.

Figure 1: Word-clouds for ten joke categories.

3.4 Hierarchy of the categories
With the help of the scipy [22] Python library, we also built a

dendrogram of relations between the categories using a hierarchical

clustering method, which is shown in the Figure 2. Here we also

included the category from sources NAJVICI and MLADINSKI,

so that we can visually display the content linkage between

different categories. The dendrogram is a hierarchical diagram,

which shows which terms (in our case joke categories) are closer

together by putting the more similar categories closer together on

the Y-axis. The more similar are the categories, shorter are the lines

connecting these categories, and vice versa.

From the dendrogram we can see that the categories MLADINSKI

(En. young ones) and SOLSKI (En. School ones) are most similar,

since the school is usually visited by young people. Based on the

names of the categories NAJVICI and Mesane sale (En. Random

jokes), it can also be assumed that these categories are very similar.

From the dendrogram we can also see that groups of categories

marked by red and green connections are very different. We can

conclude that this division can be attributed primarily to slang

expressions, which are more commonly used in foreign jokes as

well as older jokes.

Figure 1: Hierarchical clustering of joke categories.

3.5 Multidimensional scaling
Multidimensional scaling (MDS) enables the visualization of the

level of similarity of individual cases of a dataset by lowering the

number of different attributes to only two. It refers to a set of related

ordination techniques used in information visualization, in

particular to display the information contained in a distance matrix

[7]. By using the MDS in the sklearn.manifold[23] library and the

mpl_toolkits.mplot3d[24] library, we can observe relations

between categories even more efficiently, as shown in a 2D graph

in the Figure 3. This plot shows which categories are closer together

and which categories differ the most. Contrary to the dendrogram,

we can see that “Mujo in Haso” are not so close to “Ciganski” and

“Stari vici”, but these three categories differ the most from the rest.

Figure 2: 2D Multidimensional scaling plot, which shows the

similarity of different joke categories

29

This shows the seclusion of three categories (a group of categories

marked in a dendrogram with red color, which includes Stari Vici,

Mujo in Haso and Ciganski) in relation to other categories. These

make up a kind of circle around the categories “NAJVICI” and

“Mesana Sale”. Categories “NAJVICI” and “Mesana Sale” are the

closest neighbors, which also suggests an exceptional similarity

between the categories.With the help of Figure 3, we can see the

relationship between categories even better; in the case of the

categories “Moski” and “Zenske”, we can see that according to

their content, these two are very similar categories.

As depicted in the Figure 4 is a 3D graph of relations for use in

further discussions for the show. By using the 3D graph (Graph 4),

we can even more accurately determine the differences between the

categories of texts. This display mode can turn out to be even more

useful in a larger number of data and when looking for interesting

patterns in these texts.

Figure 3: 3D Multidimensional scaling plot, which shows the

similarity of different joke categories

4. CONCLUSION
This paper presents a use case of machine learning methods in the

analysis of short texts in a form of jokes. We presented the process

of gathering, cleaning and preprocessing the jokes, which was

followed by the description of the analysis done with machine

learning methods and various visualization techniques. We

demonstrated how jokes could be automatically categorized in the

predefined categories using the Support Vector Machine

classification method. With two different visualizations: the

dendrogram and the multidimensional scaling plot, we showed how

different joke categories are similar one to another. With these

methods, we demonstrated, how we could perform different

comparisons, which can serve us in the further processing of data,

and the connection of data between us is visualized in a useful and

interesting way.

In this paper, we only analyzed the jokes in Slovenian language.

For future work, we could compare jokes in different languages to

find similarities and differences of jokes and their popularity across

different languages and cultures.

ACKNOWLEDGMENTS
The authors acknowledge the financial support from the Slovenian

Research Agency (research core funding No. P2-0057).

REFERENCES
[1] http://html-agility-pack.net, Last visited: 20.8.2018

[2] http://www.verzi-vici.com, Last visited: 5.8.2018

[3] http://www.naj-vici.com, Last visited: 5.8.2018

[4] http://www.mladinska.com/, Last visited: 5.8.2018

[5] https://pandas.pydata.org, Last visited: 13.8.2018

[6] http://scikit-learn.org/stable/modules/generated/sklearn.svm.Li

nearSVC.html, Last visited: 13.8.2018

[7] https://en.wikipedia.org/wiki/Multidimensional_scaling,

Last visited: 20.8.2018

[8] Song, G., Ye, Y., Du, X., Huang, X. and Bie, S., 2014. Short

text classification: A survey. Journal of Multimedia, 9(5), p.635.

[9] Chen, M., Jin, X. and Shen, D., 2011, July. Short text

classification improved by learning multi-granularity topics. In

IJCAI (pp. 1776-1781).

[10] Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H. and

Demirbas, M., 2010, July. Short text classification in twitter to

improve information filtering. In Proceedings of the 33rd

international ACM SIGIR conference on Research and

development in information retrieval (pp. 841-842). ACM.

[11] Dave, K., Lawrence, S. and Pennock, D.M., 2003, May.

Mining the peanut gallery: Opinion extraction and semantic

classification of product reviews. In Proceedings of the 12th

international conference on World Wide Web (pp. 519-528). ACM.

[12] Wang, Y., Liu, J., Qu, J., Huang, Y., Chen, J. and Feng, X.,

2014, December. Hashtag graph based topic model for tweet

mining. In Data Mining (ICDM), 2014 IEEE International

Conference on (pp. 1025-1030). IEEE.

[13] Badra, F., Bendaoud, R., Bentebibel, R., Champin, P.A.,

Cojan, J., Cordier, A., Després, S., Jean-Daubias, S., Lieber, J.,

Meilender, T. and Mille, A., 2008, September. Taaable: Text

mining, ontology engineering, and hierarchical classification for

textual case-based cooking. In 9th European Conference on Case-

Based Reasoning-ECCBR 2008, Workshop Proceedings (pp. 219-

228).

[14] McKinney, W., 2012. Python for data analysis: Data

wrangling with Pandas, NumPy, and IPython. " O'Reilly Media,

Inc.".

[15] Friedman, J., Hastie, T. and Tibshirani, R., 2001. The elements

of statistical learning (Vol. 1, No. 10). New York, NY, USA::

Springer series in statistics.

[16] Vapnik, V. and Mukherjee, S., 2000. Support vector method

for multivariate density estimation. In Advances in neural

information processing systems (pp. 659-665).

[17] Aizawa, A., 2003. An information-theoretic perspective of tf–

idf measures. Information Processing & Management, 39(1),

pp.45-65.

[18]http://en.wikipedia.org/wiki/Category:Classification_algorith

ms, Last visited 13.9.2018

[19] https://en.wikipedia.org/wiki/Support_vector_machine Last

visited 13.9.2018

[20] https://www.csie.ntu.edu.tw/~cjlin/liblinear/, Last visited

13.9.2018

[21] https://matplotlib.org/, Last visited 13.9.2018

[22] https://www.scipy.org/, Last visited 13.9.2018

[23] http://scikit-learn.org/stable/modules/generated/sklearn.manif

old.MDS.html, Last visited 13.9.2018

[24] https://matplotlib.org/2.0.2/mpl_toolkits/mplot3d/api.html

30

A Data Science Approach to the Analysis of Food Recipes

Tjaša Heričko

Faculty of Electrical Engineering and
Computer Science

University of Maribor, FERI
Maribor, Slovenia

tjasa.hericko@student.um.si

Sašo Karakatič
Faculty of Electrical Engineering and

Computer Science,
University of Maribor

Maribor, Slovenia

saso.karakatic@um.si

Vili Podgorelec
Faculty of Electrical Engineering and

Computer Science,
University of Maribor

Maribor, Slovenia

vili.podgorelec@um.si

ABSTRACT

In this paper, we explore the correlation between cuisine and text-

based information in recipes. The experiments are conducted on a

real dataset consisting of 9,080 recipes with data science

approaches focusing on enhancing cuisine prediction and

providing a detailed insight on the characterization of food

cultures. The findings suggest that information about ingredients

is the most relevant predictor of cuisines, however, despite being

less efficient, recipe name, preparation instructions, preparation

time, skill level and nutritional facts can be considered as well.

Categories and Subject Descriptors

I.2.m [Artificial Intelligence]: Miscellaneous.

I.5.m [Pattern Recognition]: Miscellaneous.

General Terms

Algorithms, Measurement, Experimentation.

Keywords

Data Science, Machine Learning, Text mining, Classification,

Food Recipes, Cuisines.

1. INTRODUCTION
In response to technological advancements and social changes in

the last decades, the tendency to collect and store recipes only in

cookbooks has changed. Numerous online recipe portals started to

rapidly accumulate food-related content, with more and more

recipes being published online daily. The growth in the amount of

user-generated recipe data available on the Internet has raised

several issues that researchers have been trying to address in

recent years. The objective of this paper is to explore the

correlation between cuisine and text-based information in recipes,

including recipe name, list of ingredients, preparation

instructions, preparation time, skill level, calories and nutritional

information. The results of this study address the issue of

automatic recipe cuisine categorization, making it easier to submit

a new recipe and preventing possible additional noise in recipe

database – this can be helpful for both the contributors as well as

for the culinary website curators.

We conducted a series of experiments on a real dataset retrieved

from BBC Good Food1 consisting of 9,080 recipes from various

cuisines with data science approaches focusing on the following:

(1) Providing a detailed insight on the characterization of various

food cultures. (2) Identifying necessary text-based information

1 https://www.bbcgoodfood.com/

from recipes needed to perform well at cuisine prediction. (3)

Enhancing cuisine prediction.

This paper is organized as follows. Section 2 gives a brief

overview of related work. Section 3 presents the dataset used in

our research. Section 4 describes the applied methodologies.

Section 5 provides results of our research. Section 6 concludes the

paper by summarizing the main results of our work.

2. RELATED WORK
The correlation between recipes and their cuisines has been the

subject of several recipe analysis related research. Mostly, there

have been previous studies conducted on classifying recipes into

respective cuisines based on ingredients. H. Su et. al. [1]

evaluated data collected from Food2 and used the techniques of

associative classification and support vector machine to classify

226,025 recipes to one of six cuisines, using ingredients as inputs,

with a precision and recall of about 75 %. The researchers in [2–

8] further studied cuisine-ingredient connection, using 39,774

recipes from twenty cuisines provided by Yummly3. Similar

studies were conducted on data from Epicurious [9], Epicurious

and Menupan4 [10] and Food, Epicurious5 and Yummly [11]. A

variety of machine learning algorithms, including k-means [2, 9],

random forest classifier [2, 5, 6, 8, 9, 10], support vector machine

[3, 5, 6, 7, 10, 11], logistic regression [4, 5, 6, 10, 11] and naive

Bayes [5, 6, 7, 9, 10, 11], were used in these studies. From several

tested algorithms, linear support vector machine, reaching up to

80,9 % accuracy in [7], was found to be the most efficient for this

cuisine prediction task based on ingredients.

Other studies focused on the importance of other information

extracted from recipes for cuisine prediction. H. Kicherer et. al.

[12] evaluated the use of ingredients and preparation instructions

for cuisine prediction, conducted on recipes from German website

Chefkoch6. The study revealed that ingredients alone are as good

an indicator as the recipe instructions. Whereas a combination of

information from both – nouns from the instructions and the list

of ingredients – performs better. T. Ozaki et. al. [13] also

demonstrated that, based on Japanese recipes from Cookpad

Data7, certain sets of ingredients and preparation actions deeply

correspond to cuisine types.

Previous studies have already noted that ingredients reveal

important information about cuisines and that predicting cuisines

2 https://www.food.com/
3 https://www.yummly.com/
4 https://www.menupan.com/
5 https://www.epicurious.com/
6 https://www.chefkoch.de/
7 https://cookpad.com/

31

https://www.bbcgoodfood.com/
https://www.food.com/
https://www.yummly.com/
https://www.menupan.com/
https://www.epicurious.com/
https://www.chefkoch.de/
https://cookpad.com/

based on the ingredients is possible. Though, to our knowledge,

few researchers have considered using additional text-based

information from recipes, for instance, preparation instructions,

preparation time and nutrition facts, as possible attributes in

cuisine prediction. Therefore, there is little understanding of how

they are related to cuisine types. In contrast to the work presented

above, we performed a richer analysis of recipes with a wider

range of attributes extracted from recipes, whereas the dominant

approach appears to deal only with ingredients as attributes.

3. DATASET
Our research was conducted on the crawled data collected from an

online food recipe portal BBC Good Food. A dataset of 9,429

recipes was scraped with Python8, using Scrapy framework9 and

CSS selectors, in June 2018.

For each recipe, the following information was provided: recipe

name, cuisine, list of ingredients, preparation instructions,

preparation time, skill level and nutrition facts, including the

amount of calories, total fat, saturated fat, total carbohydrate,

sugars, protein, fiber and salt per serving. More details are

presented in Table 1.

Table 1. Characteristics of text-based information in recipe

Information Data Type Description

Recipe name Unstructured
Arbitrary string described in

natural language.

Cuisine Categorical One of 45 cuisine types.

List of

ingredients
Unstructured

Arbitrary string depicting

needed ingredients for

preparation, each ingredient

normally consisting of an

ingredient type, an amount and

a unit.

Preparation

instructions
Unstructured

Step-by-step instructions for

preparation using ingredients

described in natural language.

Preparation

time
Numerical

A number representing time

measured in minutes needed

for preparation.

Skill level Categorical
One of 3 difficulties: easy,

more effort or a challenge.

Nutrition facts Numerical

A number representing

nutrition per serving measured

in kcal for calories intake or in

grams for fat, saturated fat,

carbohydrate, sugars, protein,

fiber and salt.

4. METHODOLOGY
The methodology in this paper was implemented in Jupyter

notebook environment10 running Python code and using a

combination of Python libraries comprising pandas11, scikit-

learn12, NLTK13, seaborn14, matplotlib15 and wordcloud16.

8 https://www.python.org/
9 https://scrapy.org/
10 http://jupyter.org/
11 https://pandas.pydata.org/
12 http://scikit-learn.org/
13 https://www.nltk.org/
14 https://seaborn.pydata.org/
15 https://matplotlib.org/
16 http://amueller.github.io/word_cloud/

4.1 Data Preprocessing
For the dataset to be feasible for the analysis, preprocessing was

performed on the raw scraped data.

During the data cleaning step, missing values and duplicates were

resolved by removing these recipes from the original dataset,

leaving a subset of 9,080 recipes.

The original dataset included 45 cuisine categories, many of them

only consisted of few recipes. In the next step of data preparation,

based on the findings of previous researches of cuisines being

location-dependent [14], we combined smaller cuisines into

bigger regional cuisine categories (e.g. Balinese, Thai,

Vietnamese and Indonesian into Southeast Asian cuisine) and

therefore reduced cuisine categories to the following 13: African,

Middle Eastern, South Asian, Southeast Asian, East Asian,

Oceanic, American, Latin American, Western European, Northern

European, Central European, Eastern European, Mediterranean.

As highlighted in Table 1, preparation time and nutrition facts are

numerical, cuisine and skill level are categorical, whereas recipe

name, list of ingredients and preparation instructions are

described in natural language. For all of them, additional

preprocessing was needed prior to conducting analyses.

Numerical attributes were standardized, considering certain

algorithms used in our research are sensitive to varied number

scales and intervals used [15]. As scikit-learn algorithms only

work on numerical data, categorical data needed to be encoded as

numerical. This was done by converting categorical data into

dummy variables [16]. For unstructured data to be used for

classification, several more text preprocessing methods were

needed: tokenization, stop word removal, stemming and tf–idf

term weighting. Tokenization is the process of segmenting a text

into identifiable basic linguistic units called tokens, such as words

and punctuation [17]. For better processing, all tokens were

converted to lowercase. Stop words are frequently used common

words, such as ‘and’, ‘the’ and ‘this’. Because their presence in a

text fails to distinguish it from other texts and are therefore not

useful in classifications, they were removed before further

processing [18]. We also made a custom list of stop words, where

we included numbers that represent amounts and words that

represent units, e.g. ‘2’ and ‘tbs’, that would not be of value in the

analysis. The same applies to punctuation, therefore they were

filtered out as well. Next, stemming using the Porter stemming

algorithm, the process of removing morphological affixes from

words, which conflate variant forms of a word into a unified

representation [19], was performed. Lastly, for words counts

being suitable for usage by a classifier, tf–idf transform was

conducted. Tf–idf, short for term-frequency times inverse

document-frequency, is used to re-weight a words importance

based on a frequency of a world in a document compared to the

appearance in other documents [20].

4.2 Exploratory Data Analysis
To get an overall view of the data, exploratory data analysis was

made on preprocessed data using graphs, word clouds and tables.

Visualization was especially used to provide clarity on the

characterization of various cuisines.

4.3 Classification
Various classification algorithms were used to perform the cuisine

prediction based on the information from the recipes. The recipe

dataset was randomly divided into training (75 %) and testing set

32

https://www.python.org/
https://scrapy.org/
http://jupyter.org/
https://pandas.pydata.org/
http://scikit-learn.org/
https://www.nltk.org/
https://seaborn.pydata.org/
https://matplotlib.org/
http://amueller.github.io/word_cloud/

(25 %). The training set was used to train, while the test set was

used to assess models.

4.3.1 Naive Bayes
Naive Bayes is based on applying Bayes’ theorem with the naïve

independence assumption between every pair of features.

Gaussian naive Bayes assumes the probability of features is

Gaussian. Multinomial naive Bayes implements the algorithm to

the usage for text classification [21].

4.3.2 Support Vector Machine
A linear support vector machine constructs a hyper-plane or set of

hyper-planes in a high or infinite dimensional space using linear

algebra [22].

4.4 Evaluation Metrics
To measure classification performance the following metrics were

used: accuracy and F-score. Accuracy is the percentage of correct

predictions. F-score is a weighted average of the precision and

recall, where precision represents the ability of the classifier not to

label as positive a sample that is negative and recall the ability of

the classifier to find all the positive samples [23].

5. RESULTS
As an initial step, we carried out an exploratory data analysis to

get a better understanding of cuisines and their characteristics.

Table 2 lists average preparation time and calories per serving for

each cuisine. Given the analysis, recipes from Northern Europe,

Middle East and Western Europe take the longest to prepare,

whereas recipes from East Asia, Latin America and Southeast

Asia are generally the quickest to prepare. Furthermore, on

average, Mediterranean, Oceanic and American cuisines are high

in energy, on the contrary, Southeast Asian, East Asian and South

Asian have recipes with lower energy values.

Table 2. Overview of the cuisines

Cuisine Common ingredients

Average

preparation

time [min]

Average

calories

[kcal]

African
Oil, onion, lemon,

clove, coriander.
51,73 399,68

Middle Eastern
Oil, onion, tomato,

garlic, clove.
76,67 409,11

South Asian
Onion, oil, coriander,

chili, clove.
53,74 367,50

Southeast Asian
Sauce, lime, chili, oil,

sugar.
45,00 350,78

East Asian
Sauce, oil, onion, chili,

rice.
40,49 363,18

Oceanic Sugar, oil, egg. 60,36 430,70

American
Sugar, butter, oil, flour,

egg.
57,68 422,37

Latin American
Onion, oil, chili,

coriander, lime.
43,17 399,30

Western

European

Sugar, oil, butter, egg,

flour.
66,59 394,85

Northern

European

Oil, sugar, onion, egg,

cream.
119,59 374,61

Central

European

Sugar, butter, egg,

flour, oil.
62,73 402,85

Eastern

European

Oil, butter, egg, flour,

garlic.
57,96 390,04

Mediterranean
Oil, garlic, clove,

tomato, onion.
48,68 433,36

To give an idea of the ingredients that form an integral part of

each cuisine, we extracted the most common ingredients in every

cuisine and visualized unigrams from the ingredient list in word

clouds. As detailed in Table 2, many ingredients are frequent in

all the cuisines, e.g. oil and onion, hence, these will not be useful

for prediction. While others are typically used only in certain

cuisines, e.g. soya sauce and clove.

Figure 1 represents word clouds consisted of the most common

unigrams extracted from the ingredient list for East Asian cuisine.

Although most common ingredients did not give us much insight,

these word clouds do show some typical ingredients, based on

which they can be distinguished from other cuisines, e.g. sugar,

flour, milk, cream, chocolate, egg, mayonnaise, butter in

American cuisine and soy sauce, rice, ginger, soy, chili in East

Asian cuisine.

Figure 1. Word cloud for East Asian cuisine

Cuisines also differ on nutrition facts. In Figure 2, for every

cuisine an average value of each nutrition per serving is presented.

Figure 2. Nutrition facts for cuisines

In the next step, classification algorithms were applied to identify

which text-based information from recipes is needed to perform

33

well at cuisine prediction. A classification with multinomial naive

Bayes, based on the list of ingredients, proved to be the most

efficient. This model yielded an accuracy of 73,8 %. Less than 1

% lower was the accuracy obtained with classification based on

recipe name and more than 2 % based on preparation instructions.

Classifications based on skill level, preparation time, calories and

nutritional information all performed with an accuracy of about 56

%. Classification performance based on accuracy and F-score are

summarized in Table 3.

Table 3. Results of classification

Information Classifier Accuracy F-score

Recipe name
Multinomial naive

Bayes
72,73 % 72,73 %

List of

ingredients

Multinomial naive

Bayes
73,83 % 73,83 %

Preparation

instructions

Multinomial naive

Bayes
70,97 % 70,97 %

Preparation

time

Gaussian naive Bayes 55,29 % 55,29 %

Linear SVM 55,68 % 55,68 %

Skill level Linear SVM 56,12 % 56,12 %

Calories
Gaussian naive Bayes 55,68 % 55,68 %

Linear SVM 55,68 % 55,68 %

Nutritional

information

Gaussian naive Bayes 53,48 % 53,48 %

Linear SVM 57,00 % 57,00 %

6. CONCLUSION
Thousands of recipes from various cuisines were analyzed with

data science approaches with the objective of providing a deeper

understanding of culinary cultures and cuisine prediction. While

previous research efforts have mostly used only ingredients for

cuisine prediction, our findings demonstrate that other text-based

information extracted from recipes can be used as well. While

ingredients with an obtained accuracy of almost 74 % remain to

be the most efficient, cuisine prediction from recipe name and

preparation instructions also performs well. Whereas prediction

based on preparation time, skill level and nutrition facts were

discovered to be less effective, with about 56 % accuracy.

7. REFERENCES
[1] H. Su, M. K. Shan, T. W. Lin, J. Chang, and C. T. Li, “Automatic

recipe cuisine classification by ingredients,” Proceedings of the

2014 ACM International Joint Conference on Pervasive and

Ubiquitous Computing Adjunct Publication - UbiComp 14 Adjunct,

pp. 565–570, 2014.

[2] S. Srinivasasubramanian, B. Kushwaha, and V. Parekh, “Identifying

Cuisines From Ingredients,” 2015. [Online]. Available:

https://pdfs.semanticscholar.org/3daa/3c535a3c2580e69984203137

db3ee6422601.pdf. Accessed on: August 16, 2018.

[3] P. Bhat, S. Gupta, and T. Nabar, “Bon Appetite: Prediction of

cuisine based on Ingredients.” [Online]. Available:

http://cseweb.ucsd.edu/~jmcauley/cse255/reports/fa15/020.pdf.

Accessed on: August 16, 2018.

[4] H. H. Holste, M. Nyayapati, and E. Wong, “What Cuisine? - A

Machine Learning Strategy for Multi-label Classification of Food

Recipes,” 2015. [Online]. Available:

http://jmcauley.ucsd.edu/cse190/projects/fa15/022.pdf. Accessed on:

August 16, 2018.

[5] R. S. Verma, and H. Arora, “Cuisine Prediction/Classification based

on ingredients.” [Online]. Available:

http://cseweb.ucsd.edu/~jmcauley/cse255/reports/fa15/028.pdf.

Accessed on: August 16, 2018.R. Ghewari, and S. Raiyani,

“Predicting Cuisine from Ingredients.” [Online]. Available:

http://cseweb.ucsd.edu/~jmcauley/cse255/reports/fa15/029.pdf.

Accessed on: August 16, 2018.

[6] S. Kalajdziski, G. Radevski, I. Ivanoska, K. Trivodaliev, and B. R.

Stojkoska, “Cuisine classification using recipes ingredients,” 2018

41st International Convention on Information and Communication

Technology, Electronics a nd Microelectronics (MIPRO), 2018.

[7] R. M. R. V. Kumar, M. A. Kumar, and K. P. Soman, “Cuisine

Prediction based on Ingredients using Tree Boosting

Algorithms,” Indian Journal of Science and Technology, vol. 9, no.

45, Aug. 2016.

[8] T. Arffa, R. Lim, and J. Rachleff, “Learning to cook: An exploration

of recipe data.” [Online]. Available:

https://pdfs.semanticscholar.org/3f63/269aa7910774e9386b1ffb340

a9e8638c02d.pdf. Accessed on: August 16, 2018.

[9] J. Naik, and V. Polamreddi, “Cuisine Classification and Recipe

Generation,” 2015. [Online]. Available:

https://pdfs.semanticscholar.org/aaa9/67ce597961bad308ec137a616

9e1aba1fe35.pdf. Accessed on: August 16, 2018.

[10] S. Jayaraman, T. Choudhury, and P. Kumar, “Analysis of

classification models based on cuisine prediction using machine

learning,” 2017 International Conference On Smart Technologies

For Smart Nation (SmartTechCon), pp. 1485–1490, 2017.

[11] H. Kicherer, M. Dittrich, L. Grebe, C. Scheible, and R. Klinger,

“What you use, not what you do: Automatic classification and

similarity detection of recipes,” Data & Knowledge Engineering,

2018.

[12] T. Ozaki, X. Gao, and M. Mizutani, “Extraction of Characteristic

Sets of Ingredients and Cooking Actions on Cuisine Type,” 2017

31st International Conference on Advanced Information

Networking and Applications Workshops (WAINA), pp. 509–513,

2017.

[13] K. J. Kim, and C. H. Chung, “Tell Me What You Eat, and I Will Tell

You Where You Come From: A Data Science Approach for Global

Recipe Data on the Web,” IEEE Access, vol. 4, pp. 8199–8211,

2016.

[14] Scikit-learn, “sklearn.preprocessing.StandardScaler.” [Online].

Available: http://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardS

caler.html. Accessed on: August 21, 2018.

[15] Pandas, “pandas.get_dummies.” [Online]. Available:

https://pandas.pydata.org/pandas-

docs/stable/generated/pandas.get_dummies.html. Accessed on:

August 21, 2018.

[16] NLTK, “NLP with Python – Processing Raw Text.” [Online].

Available: http://www.nltk.org/book/ch03.html. Accessed on:

August 21, 2018.

[17] NLTK, “NLP with Python – Accessing Text Corpora and Lexical

Resources.” [Online]. Available:

https://www.nltk.org/book/ch02.html. Accessed on: August 21,

2018.

[18] NLTK, “NLTK HOWTOs – Stemmers.” [Online]. Available:

http://www.nltk.org/howto/stem.html. Accessed on: August 21,

2018.

[19] Scikit-learn, “Feature extraction.” [Online]. Available: http://scikit-

learn.org/stable/modules/feature_extraction.html. Accessed on:

August 21, 2018.

[20] Scikit-learn, “Naive Bayes.” [Online]. Available: http://scikit-

learn.org/stable/modules/naive_bayes.html. Accessed on: August 21,

2018.

[21] Scikit-learn, “Support Vector Machines.” [Online]. Available:

http://scikit-learn.org/stable/modules/svm.html. Accessed on:

August 21, 2018.

[22] Scikit-learn, “Classification metrics.” [Online]. Available:

http://scikit-

learn.org/stable/modules/model_evaluation.html#classification-

metrics. Accessed on: August 21, 201

34

https://pdfs.semanticscholar.org/3daa/3c535a3c2580e69984203137db3ee6422601.pdf
https://pdfs.semanticscholar.org/3daa/3c535a3c2580e69984203137db3ee6422601.pdf
http://cseweb.ucsd.edu/~jmcauley/cse255/reports/fa15/020.pdf
http://jmcauley.ucsd.edu/cse190/projects/fa15/022.pdf
http://cseweb.ucsd.edu/~jmcauley/cse255/reports/fa15/028.pdf
http://cseweb.ucsd.edu/~jmcauley/cse255/reports/fa15/029.pdf
https://pdfs.semanticscholar.org/3f63/269aa7910774e9386b1ffb340a9e8638c02d.pdf
https://pdfs.semanticscholar.org/3f63/269aa7910774e9386b1ffb340a9e8638c02d.pdf
https://pdfs.semanticscholar.org/aaa9/67ce597961bad308ec137a6169e1aba1fe35.pdf
https://pdfs.semanticscholar.org/aaa9/67ce597961bad308ec137a6169e1aba1fe35.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html
http://www.nltk.org/book/ch03.html
https://www.nltk.org/book/ch02.html
http://www.nltk.org/howto/stem.html
http://scikit-learn.org/stable/modules/feature_extraction.html
http://scikit-learn.org/stable/modules/feature_extraction.html
http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics

Introducing Blockchain Technology into a Real-Life

Insurance Use Case

Aljaž Vodeb
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia
aljaz.vodeb@student.um.

si

Mojca Orgulan
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia
mojca.orgulan@student.

um.si

Žan Žnidar
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia

zan.znidar@student
um.si

Aljaž Tišler
Faculty of Economics and Business

University of Maribor

Maribor, Slovenia

aljaz.tisler@student.u
m.si

Tadej Rola
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia

tadej.rola@student.u
m.si

Muhamed Turkanović
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia
muhamed.turkanovic@

um.si

Martin Chuchurski
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia
martin.chuchurski@student.

um.si

Tea Unger
Faculty of Law

University of Maribor

Maribor, Slovenia

tea.unger@student.um.
si

ABSTRACT
The paper presents an analysis of a possible introduction of the

blockchain technology into an insurance business use case. The

analysis is focused on the implications such an attempt can have

from various standpoints and the technical workaround needed for

a prototype to be implemented.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and

Software

General Terms
Performance, Economics, Reliability, Experimentation, Security,

Legal Aspects, Verification.

Keywords
Blockchain; Smart contracts; Ethereum; Insurance

1. INTRODUCTION
Blockchain technology nowadays is considered as the new IT

revolution and even as the messiah for all IT-based problems.

Nevertheless, as with other innovative technologies, public’s hype

about the technology is fading. Experts now know that the

technology is useful only for specific domains and use cases as

public, virtual and untrusted environment or cryptocurrency-based

scenarios. Nonetheless, media is full of articles and news about

corporations and companies using blockchain technology for some

specific use case, which may or may not be fully meaningful. The

result of such news is rising prices of cryptocurrencies and more

importantly, rising stock prices of organisations [1].

The outcome of such approaches is various: (1) proposal and

prototypes of blockchain-based use cases, which unnecessarily use

this technology, (2) prototypes which are consistent with the

technology’s purpose but are unpractical and not user-friendly, and

(3) failed attempts to produce a practical prototype or a production

system. In this article, we explore the possibility of introducing the

blockchain technology in an insurance-based use case. The aim was

to explore the possible reasonableness of such a use case, its possible

restrictions, limitations, advantages and disadvantages. The focus of

the paper is on thus the implications of such a use case on all related

processes and the overall picture of a possible implementation.

2. BLOCKCHAIN
A blockchain is an invention that can be seen as a distributed ledger

of all transactions or events that have been executed and shared

among distributed participants. All transactions are verified with

distributed consensus inside the system. Considering basic

blockchain platforms, once a transaction is recorded, it cannot be

removed [2]. Group of verified transactions are stored in a block.

Each block contains a cryptographic hash of the previous block and

a timestamp. New linked block strengthens the integrity of the

previous one, making the chain extremely tamper resistant and

secure. With a public blockchain, a copy of the entire transaction

database (ledger) is distributed to the network. Every person can

view transactions and even participate in a consensus process.

35

mailto:aljaz.tisler@student.um.si
mailto:aljaz.tisler@student.um.si
mailto:muhamed.turkanovic@um.si
mailto:muhamed.turkanovic@um.si
mailto:martin.chuchurski@student.um.si
mailto:martin.chuchurski@student.um.si

Blockchain enables a more effective way to solve the virtual

currency problem. It solves it in a distributed manner, without the

need for a central authority [3]. Central authority represents costs

and must be trusted to act honestly.

Public blockchain is not the only type of possible blockchain

platforms. There are also private and consortium blockchains [4].

Private blockchains have write permission kept centralized to one

organization. That can be useful for a single company for database

management, auditing, etc. In a consortium blockchain partner

companies are joined together in a trusted and adaptable network.

The right to read in such blockchain types may be public or restricted

to the participants.

2.1 Smart contracts
The concept of smart contract has been known since 1994, when

Nick Szabo defined it as a "computerized transaction protocol that

executes the terms of a contract". Inside the blockchain context,

smart contracts are stored on the blockchain. They can be presented

as stored procedures in relational databases. Given that smart

contracts are deployed on the blockchain, they have their own

unique addresses. A smart contract is invoked by executing a

transaction to the unique address of the contract. It is then executed

independent and automatically on each node in the network [8].

The contract has its own state and can manage assets on the ledger.

It allows expressing the business logic within a programming code.

A well-written smart contract should describe all the possible

outcomes of the contract. This means that a function would refuse

to execute in case of incorrect (inconsistent with business logic)

parameters [8]. Smart contracts are deterministic - this means that

the same input will always produce the same output. Implementation

of smart contracts on known platforms (e.g., Ethereum), written for

example in the Solidity programming language, the developer is

prevented from writing non-deterministic contracts, since the

programming language does not contain non-deterministic

constructs. All communication with a smart contract is done through

cryptographically signed transactions. This means that all

blockchain stakeholders will receive a cryptographically verified

trace of a contract operation.

2.2 Oracles
Smart contracts on the Ethereum blockchain platform run within the

Ethereum ecosystem, where they communicate with each other.

External data can only enter the blockchain (i.e. smart contracts)

through external interaction using a transaction. This is also a

shortcoming of the platform, because the majority of business logic

is based on external data, which is thus not part of the blockchain

ledger (e.g., weather, currency price) [9]. To overcome such a

shortcoming an oracle can be used. Oracle is a trusted data source

that sends external data to a smart contract in form of a transaction.

By doing so, it relieves the smart contract of the need to directly

access the desired data outside of the network. Oracles are usually

offered as a third-party solution [8].

The oracle service behaves like a data courier where communication

between the service and smart contract is asynchronous. First, the

transaction performs the function within a smart contract in which

the instructions for service are sent. The Oracle service will then

obtain a result based on the parameters that will be returned to the

smart contract via a special function (callback) implemented in the

main smart contract in which we want data (result) from the service

[9].

3. USE CASE
To test the concept of introducing the blockchain technology in a

real-life business use case, we chose the insurance domain, which is

also one of the promising domains for the blockchain technology

[5].

A preliminary result of a market analysis has shown that a possibly

meaningful, but not yet implemented use case would be the lost

baggage insurance. This specific real-life use case nowadays still

represents long-term problems for passengers and airlines. To make

it as user-friendly and meaningful as possible, an app was envisaged.

The key functionalities of such an app, as presented in Figure 1,

would be: (1) user scans QR code of the flight ticket, (2) confirms

read data, (3) scans barcode of baggage, (4) acknowledges terms of

the smart contract, (5) info about the possible payout is provided.

With help of RFID trackers at the airports the system would be able

to surveillance the position of passenger's baggage based on the

newly confirmed IATA resolution 753. In case of a lost or delayed

baggage, an activation of a blockchain-based smart contract is

executed. A compensation could be given in crypto or fiat currencies

(ex. ETH, EURO), within 4 levels of payout.

Figure 1: Poster for a possible lost baggage insurance.

4. IMPLICATIONS
This section provides the implications of a possible implementation

of a blockchain-based solution as presented in section 3 on three

domains, legal, economic and organizational.

4.1 Legal implications
Blockchain technology as presented in section 3 raised up some

legal issues. The main legal question is the General Data Protection

Regulation (GDPR). GDPR is a legal framework for personal data

privacy, it has been written by the European Union (EU) and became

effective on May 25th. This framework is drastically changing

business of any digital venture. The Regulation granted EU citizens

new rights, e.g., the right to be forgotten and right to request all data

storage and acquisition links. The latter allows an individual to ask

an organization to delete all their personal data they store. This

specific right is also the main problem in the blockchain technology.

Blockchain technology relies on the principles of decentralization

and immutability, which means that data stored on the ledger

cannot be deleted. When this data includes personal data, we have

a problem in the GDPR area. This is the main implication of this

domain, since the use case worked on required the processing of

personal data. The main question is thus how to process personal

data with the blockchain, but still being able to delete it if needed

or to process it outside the blockchain. Research shows that many

experts are trying to find a solution [7]. Majority of the solutions

are focused on the off/on chain paradigm, whereby personal data is

never dealt with on the blockchain. Nonetheless, new problems

arise as how to link off/on chain data and if the link itself is a GDPR

violation.

 36

4.2 Economic
The main goal of the solution is to enable air passengers to sign an

ad hoc luggage insurance, which is tied to an airline ticket. The

blockchain technology will be used for the insurance coverage and

the payout of an insurance premium. The solution should allow the

payment of the insurance coverage through cryptocurrencies to get

the biggest customer coverage. It is a new business model, where the

target group are all airline users.

The biggest negative factor associated with the possible solution is

the volatility of cryptocurrencies. In practice, this represents the

possibility that we lose some of our assets as a customer or as airlines.

In addition to volatility, problems can occur in certain processing

delays. The application itself is also linked to airline and airport data.

If the system fails, automatic payment is not made possible, nor can

the insurance be concluded. From an economic point of view, the

application also brings many positive aspects. It is about introducing

the possibility of speeding up the rigid process of current luggage

insurance and redress. The cost of maintaining a blockchain network

and smart contracts is not negligible. These can be covered through

the annual contribution of airlines for their usage of such a possible

solution. At the same time a certain percentage can be collected from

each insurance.

The economic advantages of such a solution are many: (1)

introduction of new technology, (2) the possibility of ad hoc

insurance, and (3) a new business model.

4.3 Organizational
One of the main problems of a possible solution are of

organizational structure. For it to make sense, a platform should be

implemented, where all willing airlines could register and provide

baggage insurance to all possible consumers. Each airline can and

should have a partnership with an insurance company. Thus, to

complete the registration, the airlines must provide their insurance

price and max payout in case of a lost baggage. Furthermore, the

solutions must be automatic and enable easy baggage check and

insurance claim. A simplification of such a request comes with the

IATA Resolution 753, which states that by June 2018, airline

members must be able to, among others, demonstrate delivery of

baggage when custody changes [6]. This furthermore implies that

the ecosystem must include airports which will provide the data

mentioned about the status of the baggage. Technically, a link to a

web service is required, where data about the baggage is accessible.

5. PROTOTYPING
It should be emphasized that blockchain technology is a rather

unexplored thing. In most cases there are no examples of good

practice on process of how the introduction of the blockchain

should start.

After analyzing the possible use-case and its implications we

propose a prototype in a form of a decentralized application (dApp),

based on the Ethereum smart contracts. The front end of the

solution could be a simple Angular 2 web application with an

intuitive, user-friendly interface, accessible on multiple devices.

The main advantage of using a web application as opposed to

device-specific applications, is the support of various operating

systems and models. If a user selects to pay with cryptocurrency,

he/she can use the plugin MetaMask to connect to the Web3 part of

the application and send a signed transaction to a smart contract on

the blockchain. According to GDPR laws, personal information

needs to be delible, therefore it should be stored in a separate

database off-chain, accessible through an API. Such an architecture

can be given by storing airline information off-chain and non-

identifying user insurance data on the blockchain.

Figure 2 presents the architecture of the possible solution. Users

connect to the service through a dApp with the option to pay with

crypto or fiat currencies. For clarity, the former option will be

marked with the letter (a), and the latter with (b). There are two

blockchains used, the Ethereum’s MainNet to process payment

transactions and our InsurNet for business logic (private Ethereum

network). Crypto transactions are first processed on the MainNet

(2a), where an oracle is triggered to convert the value into fiat (2.1a),

before sending it to the InsurNet (2.2a), whereas fiat requests are

processed directly through the API and if successful, forwarded

towards the InsurNet (2b) to create the insurance (smart) contract.

The InsurNet smart contract uses an oracle deployed at an airline to

retrieve the status of the baggage (3.1 and 3.2) before processing the

business logic to determine the validity of the claim. If the user is

entitled to a payout, the payout oracle is called (4) to determine the

correct payment method and convert currency if needed. In case the

user paid in cryptocurrency (5a), the payout is processed on the

MainNet (6a). Otherwise the FIAT payout is handled off-chain (5b).

Figure 2: Architectural model of the proposed solution.

6. DISCUSSION
Due to the Ethereum Protocol, where every transaction must be

validated by miners and added to the block, these can be slowly

processed. When a user pays insurance with the cryptocurrency

Ether into the smart contract on the MainNet and the transaction is

confirmed, the function in our smart contract will trigger an event,

which we can listen from outside of our dApp. We will detect the

event only when the transaction is confirmed. Once our server

detects the "Paid" event from the MainNet, it will create a new

smart contract on our private blockchain InsurNet. This is reflected

in some latency for the user. With the aforementioned oracle, we

have two more. One is to verify the location of the luggage, while

the other one is to process the payment when the event is triggered

on InsurNet.

We can consider the following example where the user pays

insurance for one luggage in the cryptocurrency. We will assume

the average time to validate the transaction on MainNet is 25

seconds. The user transfers the cryptocurrency to our smart

contract, where the validation of this transaction takes 25 seconds.

Then, on a triggered event, oracle performs a new transaction on

our network, where the transaction validation time is defined for 10

seconds. Because the user does not have the luggage yet, after three

hours of landing, he performs a payout using the dApp.

Transactions are done within 10 seconds. An oracle then performs

a new transaction to write the current location information in the

smart contract (+ 10 seconds). Since baggage is not yet available,

the user is entitled to a payout, which is reflected in a new event

where an oracle performs a transaction on the MainNet. The

validation of this transaction takes 25 seconds. Thus, it takes at least

80 seconds for all transaction validations to complete.

 37

7. CONCLUSION
By proposing the concept of a fully workable prototype, we

demonstrate that a solution is possible. Nevertheless, after

considering all the implications, we conclude that such a solution

would be unpractical and not user friendly, due to all workaround

needed in order to prepare a fully working technical solution.

Considering the current evolutional stage of the blockchain

technology, we conclude that a fully crypto-based solution can be

met with approval, thus advocating the idea of the blockchain

technology being seen as business disruptor in the sense of digital

money.

ACKNOWLEDGMENTS
Our thanks to the public scholarship, development, disability and

maintenance fund of the Republic of Slovenia and the project

Following the Creative Path to Knowledge 2017 – 2020 (Po

kreativni poti do znanja 2017 – 2020) - SmartInsTech.

8. REFERENCES
[1] CB Insights. Companies 'pivoting to blockchain' see huge stock

spikes - but does the hype hold up? CB Insights - Research

Brief. [Available] 2018.

www.cbinsights.com/research/blockchain-hype- stock-trends.

[2] BlockChain Technology: Beyond Bitcoin. M. Crosby,

Nachiappan, P. Pattanayak, S. Verma and V. Kalyanaraman.

2016, Applied Innovation Review .

[3] Mattila, Juri. The Blockchain Phenomenon – The Disruptive

Potential of Distributed Consensus Architectures. [Available]

researchgate.net/publication/313477689_The_Blockchain_P

henomenon_-_The_Disruptive_Potential_of_Distribute.

[4] EduCTX: A Blockchain-Based Higher Education Credit

Platform. Muhamed Turkanović, Marko Hölbl, Kristjan Košič,

Marjan Heričko, Aida Kamišalić. 2018, IEEE Access , str. 5112

- 5127.

[5] Bruno Teboul, Frédéric Maserati, Maxime Leroux.

BLOCKCHAIN: CONCEPT AND APPLICATION

DOMAINS. Keyrus. [Available] http://keyrus-

prod.s3.amazonaws.com/Avis%20d%27expert/Blockchain/Avis

% 20d%27Expert_BLOCKCHAIN-EN%20COM.pdf.

[6] IATA. Baggage Reference Manual. 2018. [Available]

https://www.iata.org/publications/Documents/brm03-toc-

20180523.pdf.

[7] Mercer, Rebekah. Privacy on the Blockchain: Unique Ring

Signatures. arXiv. [Available] 2016.

https://arxiv.org/pdf/1612.01188.pdf.

[8] Podgorelec, Blaž. Arhitektura za nadgradljivost in zamenljivost

pametnih pogodb na platformi Ethereum. s.l. : DKUM, 2018.

[9] Zdun, Maximilian Wöhrer and Uwe. Design Patterns for Smart

Contracts in the Ethereum Ecosystem. univie.ac.at. [Available]

8 2018. http://eprints.cs.univie.ac.at/5665/1/bare_conf.pd

38

A Brief Overview of Proposed Solutions to Achieve

Ethereum Scalability

Blaž Podgorelec
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia

blaz.podgorelec@um.si

Patrik Rek
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia

patrik.rek@um.si

Muhamed Turkanović
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia

muhamed.turkanovic@um.si

Tadej Rola
Faculty of Electrical Engineering and

Computer Science
University of Maribor

Maribor, Slovenia

tadej.rola@student.um.si

ABSTRACT

Blockchain technology is part of Gartner’s top technological

trends in the following five years, whereby already moving away

from the peak of the inflated expectations on its hype cycle,

towards the slope of enlightenment. With the development of the

blockchain technology, the emergence of completely new business

processes is anticipated, as well as changes to existing business

processes, which will include the use of blockchain technology in

its implementation, partially or completely, thereby taking

advantage of the benefits that the technology itself offers.

Nevertheless, the technology has several drawbacks, whereby the

most vivid is the scalability problem. With the introduction of

Blockchain 2.0 and the Ethereum platform, the scalability

problem seemed settled out for a moment, which proved

otherwise with first generations of non-fungible tokens and high

traffic. Although Ethereum is in its infancy, progress is on high

tracks, with this year’s focus on the infrastructure. A lot of

research and work is being done on the Ethereum’s layer 2 scaling

solution such as the state channels, plasma and sharding. This

paper presents a brief overview of the current state of the

mentioned proposed solutions and some ongoing projects, which

are focused on their implementation.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and

Software

General Terms

Performance, Design, Reliability, Experimentation, Security

Keywords

Blockchain, scalability, Ethereum, channels, plasma.

1. INTRODUCTION
In recent years, on the basis of an increase in the market

capitalization [1] of the Ethereum platform, the performance of

which is based entirely on the blockchain technology, we can

conclude that it is becoming increasingly popular. The increase in

popularity consequently affects the increased number of

transactions performed within the Ethereum blockchain network

[2], whereby we can assume that the number of business

processes that are implemented with the help of blockchain

technology and Ethereum is also increasing.

All transactions transmitted on the blockchain network are

irreversibly recorded in a shared ledger among all network nodes

[3, 4]. Nodes in the blockchain network perform a protocol,

defining the ability to create new blocks with associated

transactions in an approximate 15 seconds time frame. This allows

the frequency of transactions executed in the network to be

approximately 7 - 15 transactions per second (tp/s) [5]. The open

source Ethereum platform is based on a permisionless and

publicly accessible blockchain network, which is at the same time

a distributed and decentralized operating system for running smart

contracts via its Ethereum Virtual Machine (EVM). Because of

the platform indigenous crypto currency called Ether, generated

by the blockchain network and defined by the protocol, the

platform is often used as a payment system, like the Bitcoin.

Therefore it is often compared to existing non-crypto payment

solutions, such as Visa, which, unlike the Ethereum platform, is

capable of processing a much larger number of transactions

(56,000 tp/s) [6].

In the paper, we will present the problem of scaling the

Ethereum network and the proposed solutions. These solutions

could increase the number of transactions carried out on the

Ethereum platform, thus getting closer or exceeding the

processing capacity of existing non-crypto payment systems. This

would enable the development and implementation of new

business processes with the blockchain technology.

2. ETHEREUM SCALING PROBLEM
The current implementation of the Ethereum protocol requires the

processing of all, within the network transmitted transactions, as

well as the storage of all states, from each node in the network,

that acts as a validator [7]. To confirm a change of the network

state with a transaction, the transaction must be included in a

39

block created by a node, which must solve the calculation puzzle

defined by the distributed consensus protocol, which is in the

current Ethereum version the Proof of Work (PoW). The

processing speed of the transactions is limited by the capacity of

each individual node participating in the network as the

transaction validator. Such an implementation of the protocol

provides increased safety in terms of secure processing of

transactions within the network, which is one of the key properties

of such systems. At the same time, the way in which an increased

security is achieved, is a major obstacle achieving a greater

number of transactions carried out within the blockchain network,

due to its need for heavy computation [8].

The number of transactions one block can include is limited by

the number of gas (fee for processing the operations within the

transaction), that can be consumed by all transactions in the block.

In the future, it is possible to expect a change in the way of

reaching consensus between the individual nodes in the Ethereum

network. Namely, the transition to the use of the Proof of Stake

(PoS) protocol is planned, which would mean that the time of

block generation within the Ethereum network with associated

transactions could be reduced to an average of four seconds [5].

The transition to a new protocol for reaching consensus among

the nodes in the blockchain network will thus reduce the current

scaling problems. In addition, the switch to PoS distributed

consensus will decrease the required computational power and

thus energy consumption of the network.

Changing the network consensus protocol between nodes will

have a positive effect on the transaction processing frequency

within the blockchain, but it is expected that the number of

processed transactions will still be significantly smaller compared

to the existing payment systems. Described problems in the terms

of achieving greater efficiency of blockchain, assuming

knowledge of its structure and understanding of the concepts of

the blockchain technology, offer so-called "simple" theoretical

solutions, such as:

1. It envisages the use of different "altcoins" within a

variety of separate blockchain networks, which results

in a strong increase in the flow rate of the performance

of individual transactions within the separate blockchain

networks. As a result, due to the increased number of

different blockchain networks, a reduced number of

nodes within different blockchain networks are

expected, which would mean that separate blockchain

networks will be more susceptible to attacks by

malicious nodes than if all network nodes are merged

within a single common blockchain network [9, 10].

2. Increasing the limit of the number of transactions per

block or increasing the ceiling of fuel consumption in

the case of the Ethereum protocol, theoretically implies

a large number of processed transactions. Nevertheless,

this requires significantly more computational power

(for using the PoW protocol, or the percentage (stake)

when using the PoS protocol) to validate a block with

an increased number of transactions of an individual

node in the network [9, 11].

3. Combining computational power (when using the PoW

protocol) or stake (when using the PoS protocol)

between the different blockchain networks, can

theoretically increase the flow of transaction processing,

but this could burden each individual node in the

network due to the need for processing transactions of

blockchain networks [12].

The described "simple" solutions directly relate to the so-called

trilemma of blockchain technology, which says that the

blockchain network can contain only two of the three features,

such as:

- Decentralization

- Scalability

- Security

In the case of the use of different altcoins, this would mean

increasing the efficiency (scalability) of transaction processed

within the blockchain network, while in contrary a reduction of

security of the network itself. The increase in the limit of number

of transactions in a single block and the aggregation of

computational power or the share between different blockchain

networks would theoretically increase the efficiency (scalability),

which would require greater use of computational power for the

processing of all requirements within the blockchain network

from the network nodes. This reduces the possibility of equal

participation in the network by nodes with less computational

power, which can lead to a reduction in the decentralization of the

blockchain network by nodes who have greater computing power

[8].

In the following chapters, we will present some solutions that

could solve the described problem of efficiency, whereby not to

affecting one of the described properties of the trilemma of the

blockchain technology.

3. PROPOSED SOLUTIONS
The main concern of blockchain technology is the security and a

distributed consensus in a decentralized network. The processing

of every transaction by all nodes of the network is a process that

provides these characteristics but does not provide enough

measure for increasing efficiency and scalability. Below we

describe some already proposed solutions, which can help

increasing the efficiency and scalability of the Ethereum

blockchain network without undermining the security and

decentralization of the network as such.

3.1 State channels
One of the proposed solutions, which is currently considered to be

the most mature and used, is based on the transaction processing

approach outside the blockchain network (i.e. off-chain) through

the establishment of state channels [13]. The proposal of the

solution derives from the so-called payment channels, the purpose

of which was to allow multiple micro-transactions between two

users of the system without the need of transmitting each

transaction through the blockchain network [14].

While payment channels focus on off-chain processing of

payment transactions, the purpose of the "state channels" is to

establish a channel, through which the state can be changed

outside the blockchain network, between predefined participants

[15]. This is because Ethereum blockchain holds the state of each

defined variable of every deployed smart contract. The need to

process a transaction within a blockchain network occurs only in

case of disagreement about the state changed by a transaction

within the established channel by any participant or in the case of

a closed communication within the channel. In case that there is

40

no disagreement about the changed state during the

communication within the established channel, this solution

significantly increases the number of transactions, since it

aggregates micro transactions and issues them as one in a

predefined time [16].

State channels are implemented with the help of dedicated smart

contracts. The establishment of communication through such a

channel is carried out with a special “channel smart contract”,

aimed at ensuring fair communication between participants that

perform operations and record the final state into the blockchain

network, after the communication has ended. In case of a conflict

between participants in communication outside the blockchain

(within the channel), the smart contract has the task of selecting

the most relevant last state that the users still agreed on when

communicating within the channel [17]. The security of such an

off-chain communication approach is based on the fact that each

message sent through the status channel is cryptographically

signed, with the aforementioned channel smart contract having an

implementation for verifying these messages. Each participant can

cancel the communication at any time, and the final state that is

recorded in the blockchain is that which is recognized by all

participants in the off-chain communication [15].

This type of communication allows the implementation of more

complex operations defined within smart contracts, completely

independent of the blockchain network. Consequently this means

almost instantaneous execution of operations with very low total

costs of execution of all implemented channel transactions, since

all transactions carried out within the established off-chain

channel are aggregated into a single transaction [17, 13].

3.2 Plasma
The scalability of the Ethereum network with theoretically trillion

transactions per second should be achieved by the introduction of

a strategy called Plasma. Similarly, as in the solution described in

Chapter 3.1, the purpose of Plasma is to implement transactions

without the need for individual confirmation of each of them by

the blockchain network. The solution envisages the introduction

of several side chains, whereby the last state of the newly created

chain being recorded in i.e. the main blockchain network. This

could be implemented without any need to change the current

protocol and Ethereum network. The most important factor in

terms of achieving security in the Plasma solution, relates to the

privilege of every user to perform transactions within any side

chain (with the exception of the main Ethereum chain) and to

leave the side-chain and write the final state in the main Ethereum

chain - where the final valid state is defined. To prevent the

recording of a false state into the main chain, the Plasma solution

suggests a "Challenge mechanism", which assumes that the state

that a user wants to record in the main chain is frozen for a certain

period. During this period, other users can prove that the

proposed state is not relevant. Because of the above mechanism,

the user must provide a sum of the Ether cryptocurrency into such

a transaction that writes the state into the main Ethereum chain,

which if another user proves that such a transaction contains an

invalid state, loses and is acquired by that user, who proved the

invalid state. This mechanism could trigger a lot of false evidence

of invalid transactions; therefore, a user wishing to prove an

invalid transaction must pledge a sum of the Ether cryptocurrency,

which in the case of false evidence of invalidity, is acquired by the

user of the original transaction [18, 19].

3.3 Sharding
With the current implementation of the protocol, each node that is

part of the Ethereum network must validate every transaction,

which ensures a high level of network security. One solution is

sharding, where the protocol would separate the network state into

smaller partitions, called shards. Each shard would store its

separate state and transaction history. By implementing such a

protocol, certain nodes would process only the transactions of

certain shards. Transactions on different shards at the same time

would increase the permeability of these [20].

Sharding is a general technique used in distributed computing, the

implementation of which can be expected in Ethereum by 2020

[21]. Implementation of sharding is the only one of the described

scaling solutions that will practically have no impact on end users,

as well as not on smart contract developers on the Ethereum

platform. The system for storing states will remain the same. The

change will be at layer 1 of the Ethereum Protocol. Solutions

mentioned in 3.2. and 3.1. will work on layer 2 [22]. Sharding

eliminates the need for the entire network (each node) to process

all transactions. The result is increased number of processed

transactions per second [21].

Prior to implementing sharding in the protocol, various challenges

must be addressed. The main challenge is a single-shard take over

attack. With such an attack, an attacker could possibly take

control of the entire shard, which may result in the avoidance of

sufficient validations, or even worse, to validate the blocks that

are incorrect. These attacks are usually prevented by random

sampling schemes. The next challenge is the availability of states

between different shards. The most appropriate approach for

addressing this challenge is that the effect of a transaction

depends on the events that happened before in the second shard.

A simple example is the transfer of money where the user A (e.g.

in shard 2) transfers money to user B (e.g. in shard 7). First, a

debit transaction is executed that destroys the tokens at user A (in

shard 2), after which a "credit" transaction is created that creates

the tokens of user B (in shard 7). This transaction has an account

indicator on a "debit" transaction, which proves that the "credit"

transaction is legitimate [8].

4. CONCLUSION
In the paper, we presented several different solutions, the common

purpose of which is to achieve greater efficiency of scalable

transaction processing in the Ethereum blockchain network. State

channels move state modifications outside of the main blockchain

network. The Plasma solution envisages the introduction of

several blockchains, whereby each chain is used for a specific

purpose. Both solutions allow users to record the final state in the

main Ethereum blockchain network. We also descried the

sharding solution, the introduction of which, in contrast to the

above-mentioned solutions, requires the change of the lowest

layer of the Ethereum protocol. All the described solutions pursue

the goal of not reducing the current level of transaction processing

security, as well as maintaining the decentralization of the

blockchain itself in order to achieve scalability. In the future, due

to the increase in the number of transactions transmitted within

the Ethereum network, it is reasonable to expect several concrete

implementations (Loom Network, OmiseGO, Raiden,...) of the

described solutions, as well as an increased use of these in

practice, since it is the increase in the efficiency of the transaction

processing which is one of the key factors in achieving the

41

optimization of existing and new business processes, supported by

the blockchain technology.

5. ACKNOWLEDGMENTS
The authors acknowledge the financial support from the

Slovenian Research Agency (research core funding No. P2-0057).

6. REFERENCES
[1] “Total Market Capitalization,” coinmarketcap.com, 2018.

[Online]. Available: https://coinmarketcap.com/charts/.

[Accessed: 06-Jul-2018].

[2] “Ethereum Transaction Chart,” etherscan.io, 2018. [Online].

Available: https://etherscan.io/chart/tx. [Accessed: 06-Jul-

2018].

[3] B. Podgorelec, “Arhitektura za nadgradljivost in

zamenljivost pametnih pogodb na platformi Ethereum,”

University of Maribor, 2018.

[4] M. Pustisek, A. Kos, and U. Sedlar, “Blockchain Based

Autonomous Selection of Electric Vehicle Charging

Station,” 2016 Int. Conf. Identification, Inf. Knowl. Internet

Things, pp. 217–222, 2016.

[5] F. M. Benčić and I. P. Žarko, “Distributed Ledger

Technology: Blockchain Compared to Directed Acyclic

Graph,” 2018.

[6] Visa, “Visa Inc. at a Glance,” no. August, p. 1, 2015.

[7] V. Buterin, “A next-generation smart contract and

decentralized application platform,” Etherum, no. January,

pp. 1–36, 2014.

[8] J. Ray, “On sharding blockchains,” github.com/ethereum,

2018. [Online]. Available:

https://github.com/ethereum/wiki/wiki/Sharding-FAQs.

[Accessed: 04-Jul-2018].

[9] “The State of Scaling Ethereum – ConsenSys Media,” 2018.

[Online]. Available: https://media.consensys.net/the-state-of-

scaling-ethereum-b4d095dbafae. [Accessed: 04-Jul-2018].

[10] A. Back, M. Corallo, and L. Dashjr, “Enabling blockchain

innovations with pegged sidechains,” URL http//www., pp.

1–25, 2014.

[11] GoChain, “GoChain : Blockchain at Scale,” pp. 0–5, 2018.

[12] A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E.

Weippl, “Merged mining: Curse or cure?,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 10436 LNCS, pp. 316–333,

2017.

[13] P. Mccorry, S. Meiklejohn, and A. Miller, “Pisa : Arbitration

Outsourcing for State Channels.”

[14] “Lightning Network.” [Online]. Available:

https://lightning.network/. [Accessed: 01-Aug-2018].

[15] J. Coleman, L. Horne, and L. X. L4, “Counterfactual:

Generalized State Channels,” 2018.

[16] S. Dziembowski, L. Eckey, and S. Faust, “Perun : Virtual

Payment Hubs over Cryptocurrencies.”

[17] S. Dziembowski, S. Faust, and K. Hostáková, “Foundations

of State Channel Networks,” pp. 1–56, 2018.

[18] J. Poon and V. Buterin, “Plasma : Scalable Autonomous

Smart Contracts Scalable Multi-Party Computation,”

Whitepaper, pp. 1–47, 2017.

[19] “Explained: Ethereum Plasma – Argon Group – Medium.”

[Online]. Available:

https://medium.com/@argongroup/ethereum-plasma-

explained-608720d3c60e. [Accessed: 02-Aug-2018].

[20] R. Jordan, “How to Scale Ethereum: Sharding Explained,”

2018. [Online]. Available: https://medium.com/prysmatic-

labs/how-to-scale-ethereum-sharding-explained-

ba2e283b7fce. [Accessed: 01-Aug-2018].

[21] J. Kim, “Vitalik Buterin: Sharding and Plasma to Help

Ethereum Reach 1 Million Transactions Per Second,” 2018.

[Online]. Available: https://cryptoslate.com/vitalik-buterin-

sharding-and-plasma-to-help-ethereum-reach-1-million-

transactions-per-second/. [Accessed: 01-Aug-2018].

[22] A. Rathod, “We Should See Sharding in 2020 as Part of

‘Ethereum 2.0,’” 2018. [Online]. Available:

https://toshitimes.com/we-should-see-sharding-in-2020-as-

part-of-ethereum-2-0-eth-foundation-researcher/. [Accessed:

01-Aug-2018].

42

Integration Heaven of Nanoservices

Ádám Révész
EPAM Hungary

Budapest, Hungary
Adam_Revesz@epam.com

Norbert Pataki
Department of Programming Languages

and Compilers, Faculty of Informatics,
Eötvös Loránd University

Budapest, Hungary
patakino@elte.hu

ABSTRACT
Microservices have become an essential software architec-
ture in the last few years. Nanoservices as a generalization
of microservice architecture are getting more and more pop-
ular recently. However, this means that every component
has more and more public interfaces, and the number of
components is increasing, as well.

Integration hell had been appeared when the number of
developers was increased. The developers work parallelly,
so it is necessary to merge their work. Collaboration re-
quires software support, such as version controll tools and
continuous integration servers.

However, modern software development tools such as build
systems, testing frameworks and continuous integration servers
become sensitive regarding the version of source code to deal
with. This can result in exponential explosion in many ways
when nanoservices are in the focus.

In this paper, we argue for workflow that can handle this
exponential explosion. This workflow can be included into
continuous integration servers as jobs in order to execute test
cases in a reproducible way even if the test cases deal with
special environment specifications. Moreover, the workflow
is able to deal with building and artifact publishing pro-
cesses, as well.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; K.6.3 [Computing Milieux]: Software
Management

Keywords
Nanoservices, Integration, version control

1. INTRODUCTION
Microservices and nanoservices are essential software ar-

chitectures recently. These software architectures have many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSS ’18 Ljubljana, Slovenia
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

benefits, improved scalability, separate responsibilities, bet-
ter maintainability to name but a few [17]. On the other
hand, having a software architecture utilizing more than 70
own built nanoservices in active development requires spe-
cial care for build processes.

In terms of continuous integration (CI) and continuous de-
livery (CD) – modern software development process frame-
works pipelines are defined as composable parts of the pro-
cess describing how the product is created, transformed and
delivered from making source code and configurations on
developers workstations to serving them to end users [16].

The pipelines mentioned in this paper are executed by
automation systems following deterministic scripts referred
as “pipeline scripts”.

This paper discusses the topic of bulk management of uni-
fied pipeline scripts in aspects of reproducibility, replayabil-
ity, compactness and overhead of change management.

This paper is organized as follows. We present the prob-
lem of integration hell in section 2. We describe the problem
in section 3. Our proposed workflow is presented in section
4. Finally, this paper concludes in section 5.

2. INTEGRATION HELL

2.1 Case
The subject of the study is a software running on top

of a container orchestration system operating over multiple
nodes. Using event sourcing with Command Query Respon-
sibility Segregation (CQRS), the software utilizes over 70
services.

Every own built service is stored in its own version con-
troller system (VCS) repository [14]. Most of them are iden-
tical in the aspect of programming language, project struc-
ture, packaging system, types of artifacts, testing frame-
works, static analysis system (e.g. [11]). The discussion
continues about this kind of services.

2.2 Orchestration
A container orchestration tool manages resource alloca-

tions, configurations, credentials of containers. Provides
common internal network with service discovery, domain
services, serving well defined endpoints for outer network
communications.

In terms of scalable services, operating with nanoservices
an orchestration tool must provide load balancer service
over multiple nodes ensuring high availability. Also provides
declarative configuration and deployment management with
the ability of rolling updates and rollbacks between config-

43

uration and deployment versions also.
Currently the industry standard for a real battle tested,

serious production-grade orchestration tool is Kubernetes,
developed by Google [9].

2.3 Build tools
Modern programming laguage ecosystems have their own

(sometimes multiple) package manager for dependency han-
dling and easy build, test, install and deploy management
[12]. The common pipeline script utilizes those package
managers, reaching higher level of abstraction [10]. For ex-
ample:

• Java, Scala: Gradle[3], Maven[5], Ant[1]

• JavaScript - NodeJS: NPM[6], Yarn[8]

• C++: Conan [13]

• Python: Pip[7]

• Haskell: Cabal[2]

• Docker (images): Docker (registry) [15]

Closed source software projects as the subject utilize arti-
fact repository systems which can serve repositories for mul-
tiple type of packages for own artifacts and serve as cache
for public domain packages (in case of outage and lowering
network traffic). For example: Nexus, JFrog Artifactory.

2.4 Pipelines
The services are built automatically on VCS commit on

marked branches. Build pipeline scripts of actively devel-
oped services have to be in sync in order to guarantee the
same level of quality and compatibility with environment
(following its changes).

2.4.1 Pipeline script
A pipeline script is interpreted by a CI tool, a build system

(e.g. Jenkins [4]), is a sequence of commands optionally
separated into stages.

2.4.2 Pipeline script stage
A pipeline script stage is a named sequence of commands.

Used for visualizing the main parts of the script, leverag-
ing process status display during execution, variable scope
segregation.

2.4.3 Pipeline command
Each pipeline command can be variable declaration and

definition (including functions), function invocation, shell
invocation.

Ideally, a build system has its own pipeline script domain-
specific language (DSL) with an application-programming
interface (API) library for common operations like VCS check-
out, packaging operations, status notifications, common con-
figuration and secret storage operations.

2.4.4 Build job
In common CI tools, each pipeline script invoked by a

corresponding build job. These jobs contain metadata for
running the pipeline script, like the location of the pipeline
script itself. Storing and passing variables like job name,
parameters (given on job invocation via API call or web
UI).

2.4.5 Common pipeline
The subject project uses mostly Java Spring Boot nanoser-

vices, which kind of services have a common pipeline script
actively developed.

The common pipeline script contains the following stages:

• VCS checkout

• Build source code using package manager (like npm,
Gradle, Cabal, etc.)

• Run tests on the artifact using package manager

• Sending the source code to the static analysis system

• Building Docker image artifact

• Uploading artifacts

• Announcing build status on channels (email, instant
messaging)

Since these are nanoservices, their Docker images differ
only on the built artifact. The configurations, including en-
vironment variables, configuration and secret files, are han-
dled by the orchestration tool and building them into an
image is an anti-pattern in this use case.

2.5 Integration hell definition
Integration hell is a place where developers have to main-

tain all the pipeline scripts manually for each service or use
a common pipeline script and update all the source codes
and configurations on each service repository to be compat-
ible with the pipeline script. Also called one pipeline script
over all.

3. PROBLEM STATEMENT

3.1 Build job generation
The jobs are generated depending on the VCS repository

path structure. The generator job accepts the list of the
service names to make build job for. The build jobs are
generated from template, the only difference is in the source
code repository URL and the project name.

3.2 Single pipeline script repository approach
Having dozens of services with identical pipeline scripts, it

would come in hand to use the exactly same pipeline script
file checked out from one build script repository.

3.2.1 Limitations of updates
The single pipeline script repository approach has mul-

tiple pitfalls. Since the the job configuration has only the
repository, the branch name and the path of the pipeline
script, any change on the pipeline script would affect all the
build jobs at once. In this case either the ability to create
experimental changes on the build scripts is lost or the abil-
ity to recreate all the build jobs without breaking any of
them.

3.2.2 Lack of replayability
Other problem regarding the single repository approach

is the lack of replayability. Having a case when recreat-
ing an artifact based on an older state of the service source
code repository is needed, there is no guarantee the cur-
rent state of the pipeline script in its repository is backward

44

Figure 1: Sequence diagram of the proposed work-
flow

compatible, so there is the risk of broken or unstable build
(in worse case it turns out in production). The correct build
script should be searched in the history of the pipeline script
repository (see Figure 1).

3.2.3 Growing overhead
The mentioned problems are getting harder to resolve as

the size of the software project (the number of services) is
growing. The maintenance cost of those pipeline scripts is
high. Onboarding a new developer-, handing out the de-
velopment of such project could be extremely difficult due
to the multiple tools and sytems, scripts and their difficult
dependency graph.

4. PROPOSED WORKFLOW
Addressing these problems a reasonable solution could be

a property file in each service source code repository. This
approach makes the generator job more difficult since every
invocation it should parse the property file of every repos-
itory and generating the job according to that. An other
problem is the synchronization of those property files.

4.1 Single source of truth
There is an other, more compact, more robust and more

redundant way to address the problems. The single source
of truth for service artifact build workflows should be the
repository of their source code. This approach leverages the
compactness of each service. The service VCS repository
should contain the source code of the service, package de-
scriptor (build scripts included) and the pipeline script. This
approach can be seen on Figure 2.

4.2 Utilization of VCS
Since the VCS repository handles the pipeline script along

with the source code, any arbitrary snapshot (commit) of
the repository in any time of its history should contain the
pipeline script which executes exactly the same pipeline with
exactly the same result any time.

4.3 Keeping job generator simple

Figure 2: Sequence diagram of the single source of
truth approach

This solution does not introduce the problem of difficult
generator job but still carries the synchronization problem.

Pipeline scripts are being modified in multiple cases. There
are cases which are not strictly drived by source code changes.
Having the case of enriching the log of the pipeline script in
order to leverage traceability of the process. This change
is made only in the pipeline script and the side effects are
present only on the pipeline script log. Has no side effect on
the artifacts or test results. There are multiple open ques-
tions about which service VCS repository has to be updated
first, which should be the subject of experimental changes
and how to update all the other service pipeline script?

4.4 Automatized script updating
Addressing these questions, there is a pipeline script in the

VCS repository but unlike the single pipeline script reposi-
tory approach (see 3.2), the service build jobs are not refer-
ring to the script repository. There is a synchronization job
introduced instead. The pipeline script synchronization job
takes service name list as its arguments as the service build
job generator job does. The pipeline script updater job has
permission to update the service VCS repositories. To en-
force traceability an issue id referencing an issue describing
the change and its cause is recommended to be present in the
commit message in all affected VCS repository. The figure
3 presents this workflow.

5. CONCLUSION
Microservices and nanoservices are popular software archi-

tectures. On the other, dealing with complex software devel-
opment processes and many different development software
tools, the maintenance can be a critical problem because of
the combinatorical explosion.

45

Figure 3: Sequence diagram of the proposed work-
flow

This solution holds some security concerns like the up-
dater pipeline execute right has to be available for restricted
group of users since the VCS enables Jenkins to commit to
the master (trunk) branch.

The current prototype version is restricted to only one
kind of services to upgrade their build pipeline. Enabling
modular build scripts and their modular upgrade could be a
next iteration. The bulk update problem could be derivated
to a version controll system problem, updating common files
in two or more repositories. In context of build systems like
Jenkins (git) submodules could not be an optimal solution
increasing complexity.

The proposed solution grants the robust script handling
workflow allowing bulk pipeline script updates and replaya-
bility. It introduces some additional difficulty with the up-
date process but it has been automatized. The approach
reached a single source of truth state for each service artifact
creation process and the refered source is the VCS repository
which is a great tool to manage and observe the whole devel-
opment of its content through time. The approach reduces
the cost of maintaining pipeline scripts.

6. REFERENCES
[1] Ant. https://ant.apache.org/.

[2] Cabal. https://www.haskell.org/cabal/.

[3] Gradle. https://gradle.org/.

[4] Jenkins. https://jenkins.io/.

[5] Maven. https://maven.apache.org/.

[6] Npm. https://npmjs.com/.

[7] Pip. https://pypi.org/project/pip/.

[8] Yarn. https://yarnpkg.com/.

[9] D. Bernstein. Containers and cloud: From LXC to
Docker to Kubernetes. IEEE Cloud Computing,
1(3):81–84, Sept. 2014.

[10] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano.
Devops. IEEE Software, 33(3):94–100, May 2016.

[11] G. Horváth and N. Pataki. Source language
representation of function summaries in static
analysis. In Proceedings of the 11th Workshop on
Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems,
ICOOOLPS ’16, pages 6:1–6:9, New York, NY, USA,
2016. ACM.

[12] M. P. Martinez, T. László, N. Pataki, C. Rotter, and
C. Szalai. Multivendor deployment integration for
future mobile networks. In A. M. Tjoa, L. Bellatreche,
S. Biffl, J. van Leeuwen, and J. Wiedermann, editors,
SOFSEM 2018: Theory and Practice of Computer
Science: 44th International Conference on Current
Trends in Theory and Practice of Computer Science,
Krems, Austria, January 29 - February 2, 2018,
Proceedings, pages 351–364, Cham, 2018. Springer
International Publishing.

[13] A. Miranda and J. a. Pimentel. On the use of package
managers by the C++ open-source community. In
Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, pages 1483–1491, New York, NY,
USA, 2018. ACM.

[14] S. Phillips, J. Sillito, and R. Walker. Branching and
merging: An investigation into current version control
practices. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’11, pages 9–15, New
York, NY, USA, 2011. ACM.

[15] Á. Révész and N. Pataki. Containerized A/B testing.
In Z. Budimac, editor, Proceedings of the Sixth
Workshop on Software Quality Analysis, Monitoring,
Improvement, and Applications, pages 14:1–14:8.
CEUR-WS.org, 2017.

[16] S. Stolberg. Enabling agile testing through continuous
integration. In Agile Conference, 2009. AGILE ’09.,
pages 369–374, New York, Aug 2009. IEEE.

[17] E. Wolff. Microservices: Flexible Software
Architectures. CreateSpace Independent Publishing
Platform, 2016.

46

Service Monitoring Agents for DevOps Dashboard Tool

Márk Török
Department of Programming Languages

and Compilers, Faculty of Informatics,
Eötvös Loránd University

Budapest, Hungary
tmark@caesar.elte.hu

Norbert Pataki
Department of Programming Languages

and Compilers, Faculty of Informatics,
Eötvös Loránd University

Budapest, Hungary
patakino@elte.hu

ABSTRACT
DevOps is an emerging approach that aims at the symbiosis
of development, quality assurance and operations. Develop-
ers need feedback from the test executions that Continuous
Integration servers support. On the other hand, developers
need feedback from deployed application that is in produc-
tion.

Recently, we are working on the dashboard tool which vi-
sualizes the runtime circumstances for the developers and
architects. The tool requires runtime circumstances from
the production environment. In this paper, we introduce
our background mechanism which uses agents to retrieve
runtime information and send it to our tool. We present
many specific agents that we have developed for this soft-
ware. Our approach deals with many useful services and
tools, such as Docker and Tomcat.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics

Keywords
Agents, Monitoring, DevOps

1. INTRODUCTION
DevOps is an emerging approach in modern software en-

gineering. The key achievements of DevOps are compre-
hensive processes from building source to deployment, con-
tinuous synchronization of development and operations in
order to make every new feature delivered to the end users.
DevOps emphasizes the feedback from every phase.

DevOps-culture uses a wide range of software tools. Au-
tomation of build processes is essential solution for many
years. Continuous Integration (CI) servers track the version
control system if a change of the source has been commited
[7]. In this case, the CI server (e.g. Jenkins [1]) starts the
compilation process and executes the test cases and finally,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSS ’18 Ljubljana, Slovenia
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

sends report to the developers regarding the changes and
their effects [6]. Deployment of the compiled application
and its necessary dependencies can be launched in various
infrastructures [4]. Virtual machines in cloud, Docker con-
tainers on a host take part in the deployment frequently [5].
Configuration management tools (e.g. Ansible) can execute
specific code snippets for the deployment. Monitoring and
logging of the started application is useful to detect every
kind of runtime phenomenon and orchestrate the application
seamlessly [3].

However, tools landscape is missing good tools which are
able to present the runtime performance of applications in
staging or production environment regarding the changes of
the source code. We are working on a dashboard tool to
visualize how the deployed application behaves in specific
environment. Many typical use-cases can be mentioned.
Does the memory consumption decrease when a feature’s
new implementation is deployed? Which commit may cause
a memory leak, if it is suspicious. Does the introduction of
a new feature or API cause increase in the number of end-
users? How can one compare the performance of the system
if the webserver or a database server is replaced?

For our dashboard tool, we have developed many tool-
specific agents to report runtime perception. Our tool vi-
sualizes the reports come from agents. We have developed
agents that deal with Docker, Tomcat webserver, etc. In this
paper, we present our agent-based approach and illustrate
some agents’ internal high-level functions.

This paper is organized as follows. In section 2, we briefly
present the main concept of our tool. After, we present our
agent-based approach in a detailed way with some examples
in section 3. Finally, this paper is concluded in section 4.

2. DASHBOARD TOOL
A safe software development requires control over the en-

tire software development lifecycle (SDLC). During the de-
velopment, it is essential to avoid memory leakage, or overuse
of the CPUs. To get a good overview of the resource uti-
lization engineers, DevOps engineers have to keep their eyes
on these units that means they have to monitor their envi-
ronments by using tools that can reflect the status of the
different services, databases, network I/Os, or the amount
of written/read blocks.

In this chapter, we would like to give a brief introduction
about our Dashboard tool which can help developers to get
metrics about their environments. Developers can declare
new environments on the board and assign charts to them.
A chart represents a single observable unit from the real en-

47

vironment. Metrics are provided by agents which run on the
machine where the application is deployed. A continuously
running agents send the gathered information back to the
Listener. This way software and DevOps engineers can get
an accurate picture immediately. A screenshot can be seen
in Figure 1 about how a chart looks like.

Figure 1: Memory consumption of a Tomcat in-
stance

3. AGENTS IN OUR APPLICATION
In this section, we give a detailed view of how our agents

work and what the main steps are that we kept in focus dur-
ing the implementation. Before we go through the agents
listed below, we would like to introduce system require-
ments. The target hosts are always based on Debian images,
or any of its derivatives, like Ubuntu or Linux Mint. As we
present later, we have strived to use as less dependencies as
possible, like OS-related functionalities or commands. Most
of the commands come with the basic OS, like ps, but some
of the switches can be different on other OS, like -eo is Unix
syntax, but using axo is acceptable on both Unix and BSD
OS, as well.

The architecture consists of a server, the Listener and
nodes which serve as hosts for the agents. In our solution,
an agent is responsible for the following steps:

• After start, it runs endlessly

• Collects the information about the observed unit

• Transforms and if necessary aggregates the collected
data

• Transfers the data towards the Listener server in JSON
format

At first, we have to start the agent with an agent-specific
sub-command and a configuration file which contains all the
information that are necessary to observe the chosen unit
(e.g. see Listing 1).

$ tomcat -agent start --file config.yml

Listing 1: Launching the agent

When it starts running, it validates the arguments and
then parse and validates the file against the expected con-
figuration settings that are required to the unit. Then it
starts monitoring and collecting metrics in a specified time

period. Beside these steps, an agent also has minor charac-
teristics, like

• Runs as a daemon

• Validates the configuration file to have proper keys

• Validates the values in the configuration yml file

• Checks whether the related OS-level dependencies ex-
ist

• Transfers the collected metric to JSON

Beside these steps, an agent also has minor characteristics.
It runs as a daemon. It checks whether the related OS-
level dependencies exist. It transfers the collected metric in
JSON.

All agents require a file that contains specific information
for the observed unit, as well as, parameter for the connec-
tion to the Listener. One file can be used by many agents,
and one file can contain configurations for multiple observed
units.

Here we detail some of the agents mechanism, how they
work and what information we can get from the unit.

3.1 Tomcat
Tomcat is one of the most popular and widely-used ap-

plication server among Java developers. It provides a sim-
ple dashboard-like landing page where software and DevOps
engineers can manage the deployed packages. Via this page
those users, who are dedicated to enter the server, can check
the state of their applications. This can be a simple health-
check, the number of threads or how much memory is avail-
able for Tomcat to allocate more space for the applications.

The tomcat agent monitors both the inside status page
and the process itself as well. In the configuration file (see
Listing 2), DevOps engineer has to declare specific parame-
ters.

uri: ’localhost ’

port: 8080

username: ’admin ’

password: ’admin ’

pid: 24567

Listing 2: Agent configuration file example

If pid is not available, agent monitors the inside status
page only. An example metric that the agent is intended to
send towards the Listener can be seen in Listing 3.

{

"status ": {

"jvm": {

"memory ": {

"free": 2335645 ,

"total": 88234123 ,

"max": 2453422

}

},

"connector ": {

"requestInfo ": {

"maxTime ": 12,

...

},

"threadInfo ": {

48

"maxThreads ": 1,

"currentThreadCount ": 1,

"currentThreadBusy ": 0

}

}

}

}

Listing 3: Example metric sent by the tomcat agent

3.2 Docker
Containerization is new directive in virtualization: this

lightweight approach supports operating system-based iso-
lation among different pieces of the application. Container-
ization is on the crest of a wave since Docker has been de-
veloped. Docker provides a systematic way to automate the
fast deployment of Linux applications inside portable con-
tainers [2].

The name of docker is basically almost equivalent of con-
tainer for most of the engineers. Docker, just like Tomcat,
provides a calculation on how much memory it consumes or
what the total bytes of the received and transmitted data
is over the network for each container. These are the stats.
Without declaring any specific container name in the config
file, the agent sends information about all the containers at
the same time that are shown up in the stats. An example
message can be seen in Listing 4.

{

"containers" : [

{

"pid": 38,

"name" : ’jingle_bell ’,

"cpu" : 1.86,

"mem": {

"usage": "168.2M",

"limit": "15.43G",

"percentage ": 1.06

},

...

}

]

}

Listing 4: JSON message example sent by agent

3.3 Log
One of the most important mirror of the status of an ap-

plication is its logs. It could contain all the steps that an
execution takes and provide those steps in different granu-
larity.

The two main approaches in case of this agent are, first,
get the last n messages from the log and forward it to the
Listener, and second, get the number of the different severity
levels. The earlier can provide a view of the latest messages,
which is a talkative information based on the error or excep-
tion messages raised in the code. The latter one can show
the ratio of the different levels giving a clear overview how
much warnings or errors get hit during the execution. To
get these two metrics we mentioned above, engineers have
to use such a configuration seen in Listing 5.

...

path: ’/logs ’

file: ’observed ’

format: ’SEVERITY||’

number_of_lines: 10

Listing 5: Example configuration for the log agent

The path tag is responsible for the path of the folder which
is considered as a log folder and file is the observed unit. To
distinguish an ERROR leveled message from other messages
that contains the word error, engineers have to declare the
format of the log. The last key is responsible for the number
fetched and forwarded messages. A sent message example
sent can be seen in Listing 6.

{

"lines": ["..."] ,

"severity ": {

"info": 655,

"warning ": 848,

"error": 2,

"fatal": 0

}

}

Listing 6: JSON message example sent by the log
collection agent

Since an agent is run on a machine by an arbitrary user,
the software, DevOps and test engineers have to take care
that the observed log can be any file depends on the privi-
leges of the user.

3.4 Host Machine
The host machine which the agent is executed on, can be

a real machine, a virtual machine or a container whether it
is on local or on remote. Whichever the host machine is,
from the agent perspective they are the same. From inside
out it seems that machine has memory, CPU (or GPU),
hard disk and other resources. These resources are reachable
for the agents that means agents can use them. Having a
picture about the usage and consumption of these resources
are essential.

With this agent, we can monitor the above-mentioned re-
sources and gather their metrics. These metrics are cumu-
lated, agent takes, for example the total memory, the total
swap memory or the size of the available space on the hard
disk, regardless which processes use them.

Here we would like to give a view which metrics are taken
during the agent’s execution. We arranged the resources
into three groups. All the metrics belong to the memory, or
CPU, or disk storage (volume).

3.4.1 Memory
Memory has multiple parts from total to used to swap.

To get an accurate picture about the consumption we use,
multiple commands that can help calculating the usage of
the different parts. The agent uses free (see Listing 7),
/proc/meminfo and the vmstat commands to get metrics
about the memory (see Listing 8). All of them provide in-
formation about how much total memory is in that host,
what the size of the cached swap or how much memory is
free or how much is available for allocating new processes.

$ free -m

49

total used free ...

Mem: 15802 5485 5707 ...

Swap: 2047 0 2047

Listing 7: Using the free command

{

"Mem": {

"total": 15802,

"used": 5485,

"free": 5707,

"shared ": 2088,

"buff/cache": 4609,

"available ": 7894

},

"Swap": {

"total": 2047,

"used": 0,

"free": 2047

}

}

Listing 8: Sent message about memory consumption

3.4.2 CPU
There are plenty of tools that provide the opportunity to

monitor the usage of the CPU. Some of them are part of
the default OS, then the rest come as a third-party tool and
require installation with privileges. We took the focus on
those tools that are part of the OS, or used in wide range, like
vmstat, or iostat (see Listing 9). Both tools can provide a
picture of the CPU utilization in percentage.

$iostat -c
Linux 4.15.0 -32 - generic 2018 -08 -25 _x86_64_ (8 CPU)

avg -cpu: %user %nice %system %iowait %steal %idle
24,97 0,03 6,07 0,03 0,00 68,90

Listing 9: Using the iostat command

The agent sends the above information towards the Lis-
tener as it seen in Listing 10.

{

"user": 24.97,

"nice": 0.03,

"system ": 6.07,

"iowait ": 0.03,

"steal": 0.00,

"idle": 68.9

}

Listing 10: Sent JSON message about CPU usage

3.4.3 Volume
Volume usage does not belong to the major metrics of

the previously mentioned three units. Though it can tell
useful information about a running application. To get a
metric about the volume agent uses df (see Listing 11) and
du commands. Both of them are responsible for giving a
view of how much space is taken by a folder or how the
size of the local storage changes. Moreover, agent can be
parameterized. It takes the path to the observed folder or
partition of the storage of type of the disk. The agent sends
aggregated information as it seen in Listing 12.

$ df -t ext4

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/nvme0n1p5 120462064 77259492 37040396 68% /

Listing 11: Using the df command

{

"filesystem ": "/dev/nvme0n1p5",

"1 k_blocks ": 120462064 ,

"used": 77259492 ,

"available ": 37040396 ,

"use": 68,

"mounted_on ": "/"

}

Listing 12: Sent JSON message about volume usage

4. CONCLUSION
DevOps is an emerging approach that aims at the symbio-

sis of development, quality assurance and operations. Devel-
opers need feedback from the test executions that CI servers
support. On the other hand, no tools have been created that
support feedback from the production enviroment to the de-
velopers to follow up the code changes and its effect on the
end-users and the production or the staging environment.

In this paper, we argue for a new tools into the DevOps
toolset. The aim of this tool is retriving and visualizing
the runtime circumstances of deployed application because
this information can be essential for the developers and ar-
chitects. For this tool, we have developed many agents to
collect the runtime performance information from specific
services. In this paper, we presented the mechanism of some
specific agents in Linux environment.

5. REFERENCES
[1] Jenkins. https://jenkins.io/.

[2] D. Bernstein. Containers and cloud: From LXC to
Docker to Kubernetes. IEEE Cloud Computing,
1(3):81–84, Sept. 2014.

[3] P. P. I. Langi, Widyawan, W. Najib, and T. B. Aji. An
evaluation of twitter river and logstash performances as
elasticsearch inputs for social media analysis of twitter.
In Information Communication Technology and
Systems (ICTS), 2015 International Conference on,
pages 181–186, New York, Sept 2015. IEEE.

[4] M. Leppänen, S. Mäkinen, M. Pagels, V. P. Eloranta,
J. Itkonen, M. V. Mäntylä, and T. Männistö. The
highways and country roads to continuous deployment.
IEEE Software, 32(2):64–72, Mar 2015.

[5] Á. Révész and N. Pataki. Containerized A/B testing. In
Z. Budimac, editor, Proceedings of the Sixth Workshop
on Software Quality Analysis, Monitoring,
Improvement, and Applications, pages 14:1–14:8.
CEUR-WS.org, 2017.

[6] J. Roche. Adopting DevOps practices in quality
assurance. Commun. ACM, 56(11):38–43, Nov. 2013.

[7] S. Stolberg. Enabling agile testing through continuous
integration. In Agile Conference, 2009. AGILE ’09.,
pages 369–374, New York, Aug 2009. IEEE.

50

Incremental Parsing of Large Legacy C/C++ Software

Anett Fekete, Máté Cserép
Eötvös Loránd University

Faculty of Informatics
Budapest, Hungary

{hutche, mcserep}@inf.elte.hu

ABSTRACT
CodeCompass is an open source project intended to sup-
port code comprehension by providing textual information,
source code metrics, version control information and visu-
alization views of the file and directory level relations for
the analyzed project. Regarding the typical software de-
velopment methodologies (especially the agile ones), only a
smaller portion of the code base is affected by any change
during a shorter amount of time (e.g. between nightly
builds), therefore parsing the entire project each time is un-
necessary and expensive. A newly introduced feature, in-
cremental parsing is intended to solve this problem by only
processing files that have been recently changed and leaving
the rest alone. This is achieved by the maintenance of the
project workspace database followed by the partial parsing
of the project. The feature has been tested both on medium
and large scale projects and proved to be an effective tool
in CodeCompass.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.3.4 [Programming Languages]: Processors

General Terms
Management, Languages

Keywords
code comprehension, software maintenance, static analysis,
incremental parsing, C/C++ programming language

1. INTRODUCTION
One of the main tasks of a code comprehension software
tool is to provide exact textual information and visualiza-
tion views regarding the analyzed codebase to support the
(newcomer) developers in understanding the source code.
For an enterprise software under development this requires
the frequent static reanalysis of the program, which could
take several hours for a large legacy software.

Performing a complete static analysis each time is a signif-
icant waste of computational resources, since in most cases
(e.g. between nightly builds) only a few percent of the file
set has been affected by any change. In order to boost the
parsing and compilation process and to provide richer user
experience in integrated development environments (IDEs)
[8], the concept of incremental parsing and compilation has
been researched since decades. More recently further ap-
proaches, like the involvment of version control systems into

incremental parsing [14] and the lazy analysis [10] have been
studied. A great overview of pratical algorithms and the
exsiting methodology is given by Tim A. Wagner in [13].
C/C++ language-specific compilation tools [12, 4] and pro-
gramming environments [7] supporting incremental parsing
have also emerged as an advancement.

CodeCompass [9] is an open source, scalable code compre-
hension tool developed by Ericsson Ltd. and the Eötvös
Loránd University, Budapest to help understanding large
legacy software systems. Its web user interface provides rich
textual search and navigation functionalities and also a wide
range of rule-based visualization features [5, 6]. The code
comprehension capabilities of CodeCompass is not restricted
to the existing code base, but important architectural infor-
mation are also gained from the build system by processing
the compilation database of the project [11]. The C/C++
static analyzer component is based on the LLVM/Clang
parser [1] and stores the position and type information of
specific AST nodes in the project workspace database to-
gether with further information collected during the parsing
process (e.g. the relations between files). By introducing
the concept of incremental parsing into CodeCompass we
can detect the added, deleted or modified files in the pro-
gram and carry out maintenance operations for the database
of the code comprehension tool in only the required cases.
Thus the required time of the reanalysis can be reduced by
multiple magnitudes.

In this paper first we present our research in Section 2 on
how we extended the static analytical capabilities of the
CodeCompass code comprehension tool with incremental
parsing. Then Section 3 demonstrates the usability of the
concept by showcasing incremental parsing and measuring
its performance on a medium and a large size C/C++ soft-
ware. Finally, Section 4 concludes the results and discusses
further research opportunities.

2. METHODOLOGY
A major consideration of the introduced incremental pars-
ing feature was to integrate it seamlessly into the existing
parsing process by not differentiating in how an initial or a
follow-up incremental parse should be initiated. This was
achieved by utilizing the partial parsing feature of Code-
Compass, which means that the tool is capable of continu-
ing a previously aborted analysis, by omitting the already
parsed files which are present in workspace database.

51

Therefore the main concept of the introduced incremental
parsing feature consists of two steps: i) perform a database
maintenance operation, where the project workspace is re-
stored into a state that ii) the existing partial parsing can
finish the procedure.

2.1 Determining file states
When a new parse is being done in incremental mode, the
state of each file is determined first. Let FDB be the file set
stored in the workspace database and FDISK be the file set
stored on the disk. An f ∈ FDB ∪ FDISK file may take one
of the three states listed as follows.

Added files f is added to the project since the latest parse
if f ∈ FDISK but f /∈ FDB .

Deleted files f is deleted from the project if f ∈ FDB but
f /∈ FDISK .

Modified files f is modified when f ∈ FDB ∩ FDISK at
the time of the new parse but its content has changed
since the latest. This can be determined by comparing
the contents that are stored in the database and on
the disk, or by their respective hashes for performance
optimization.

2.2 Header inclusion traversal
Specifically when parsing a C or C++ language project,
changes in header inclusions provide one more challenge to
tackle. Upon the modification of a header file all further
files in the inclusion chain depending on it should be consid-
ered as modified, even without containing any direct changes
themselves. Therefore when determining the modified state
of a file as defined in Section 2.1, the set of files defined
by the header inclusion relationships transitively should be
checked for changes. There are two approaches for this, as
described below and shown in Figure 1.

Definition 1. For files a, b and c, given that a is included
by b and b is included by c, we say that file a is in an upward
connection with b and accordingly file c is in a downward
connection with b.

Upward traversal model The upward traversal model
depends on the upward connection between files.
When resolving the state of file a, its included headers
have to be checked for modifications transitively.

Downward traversal model Similarly, the downward
traversal model uses the downward connections that
can be found between files. If a file a is resolved as
modified, all files that include a can be marked as mod-
ified transitively. Note that with this method, the state
of any marked files can be considered final and can be
omitted from further inspections.

Theorem 1. The downward traversal model has better
computational complexity over the upward traversal model,
and therefore is preferred to be used through the incremental
parsing.

Figure 1: Traversal directions

Proof. Let G = (V,W,E) be the directed acyclic graph
(DAG) of header inclusions with V containing the file set as
vertices and E being the set of upward connections, n := |V |,
e := |E|. Let W ⊆ V denote the set of directly changed files,
k := |W |.

Let NG(v) be the neighborhood file set of vertex v in G,
so w ∈ NG(v) ⇔ (v, w) ∈ E. Therefore for a file v we can
define the directly included file set as NG(v) and the includer
files of v as NGT (v), where GT is the transpose graph of G.

We define up(G, v) and down(G, v) as the file set result of
the upward and downward traversal for v ∈ V in G by the
corresponding traversal model, as formally described below:

up(G, v) = {v} ∪ ∀w∈NG(v) : up(G,w) (1)

down(G, v) = {v} ∪ ∀w∈N
GT (v) : down(G,w) (2)

As a simplification in our model lets assume a uniform
distribution of header inclusions among the files. Since∑

v∈V deg+(v) =
∑

v∈V deg−(v) = e, the average in-degree

and out-degree for a file v is deg+(v) = deg−(v) = e
n

, which
will be denoted with d henceforth. As a consequence the
length of the longest path in G is logdn, which is the length
of the longest header inclusion chain in the project, since G
was defined as a DAG.

Therefore the asymptotic tight bound both for up(G, v) and
down(G, v) can be calculated as:

Θ(up(G, v)) = Θ(down(G, v)) = dlogdn = n (3)

We define up(G) and down(G) as the upward and downward
traversal algorithms which determines indirectly changed
files in V through header inclusions from W by the cor-
responding traversal model. We define the computational
complexity of the algorithms as the number of files checked
for changes in their content (or by their hash). Based on
Equation 3, the asymptotic tight bound both for up(G) and
down(G) can be calculated as:

Θ(up(G)) =
∑
v∈V

Θ(up(G, v)) = n2 (4)

Θ(down(G)) =
∑
w∈W

Θ(down(G,w)) = k ∗ n (5)

Since k ≤ n and in a typical use case for incremental parsing
k � n: Θ(down(G)) < Θ(up(G)).

52

An example for the downward traversal model is showcased
in Figure 2. On the left side of the figure the example file set
is shown with header inclusion dependencies denoted as ar-
rows between them. Directly modified files are marked with
a dark background, while files requiring expansion through
traversal to find indirectly changed files are marked with an
italic font. Note, that these two categories are equivalent in
the initial stage. On the right side of the figure the effects
of downward traversing a.h is demonstrated: files c.h, d.h,
f.cpp and g.cpp are also detected as indirectly changed files.
While c.h was also a directly modified file, observe that it
no longer requires downward traversal.

2.3 Database maintenance
As mentioned above, incremental parsing includes some
maintenance of the existing database depending on the state
of changed files.

1. Added files are perceived as new files to the project
and therefore are registered into the database.

2. Deleted files need to be purged from the database as
they have been removed from the project.

3. Modified files are handled as if they were a combina-
tion of deleted and added files. First, they are com-
pletely wiped out from the database – meaning that
all their AST related information and file level rela-
tions are erased –, thus considering them deleted, then
re-registered like newly added files. Directory level re-
lations are not sufficiently maintainable, but these rela-
tions can be effectively computed runtime, on-demand
from the file level relations.

3. EXPERIMENTAL RESULTS
The go-to projects on which CodeCompass is usually tested
are the Xerces-C++ [3] and LLVM [2] projects. Both
are open source projects that have been under develop-
ment for several years and therefore are considered legacy
projects. Incremental parsing was also tested on these two
as Xerces-C++ is a medium size and LLVM is a large-scale
project and contain enough files (respectively 347 and 2845)
to produce a significant difference in runtime between even
small portions of changes in the number of files.

Incremental parsing is aimed to reduce the parsing time of
builds, especially nightly builds, therefore it was tested on
1, 5 and 10 percent change of the file set, since no bigger
difference between two builds is presumable. The changeset
was generated automatically by random selection of files.1

Table 1 shows the results for Xerces-C++, while Table 2
and Table 3 depict the results for LLVM. All measurements
were carried out on a standard notebook computer, parsing
on 2 processor cores.

In order to keep database consistency in case of a graceful
abort or unexpected termination of the parser module, the
basic concept is that the maintenance operation of incre-
mental parsing must be performed in a transactional mode,
in one of the following ways:

1Only leaf nodes from graph G introduced in Section 2.2
were included in the changeset, so header inclusions did not
affect the number of changed files.

Table 1: Time measures for incremental parsing the
Xerces-C++ project

Parse type Changed files Time
Full parse – 2 min 49 sec
1% change 3 10 sec
5% change 17 21 sec
10% change 35 49 sec

Table 2: Time measures for incremental parsing the
LLVM project by one atomic transaction

Parse type Changed files Time
Full parse – 5 h 46 min
1% change 28 7 min 30 sec
5% change 142 1 h 58 min
10% change 284 2 h 45 min

• Carry out all deletions from the database in one single
transaction, so the maintenance is either completely
executed, otherwise no changes are performed.

• Generate multiple file level transactions, so informa-
tion regarding a file is either cleaned from the database
or the file is untouched, therefore a consistent state of
the database is always kept.

Table 2 and Table 3 compare the differences when the
database maintenance is executed through a single and by
file level transactions. It is clear that the extensive size of
the database rollback log containing all the deletion oper-
ations for a larger quantity of files can significantly hinder
the effectiveness of incremental parsing, providing signifi-
cant difference in the timespan of incremental parsing for
large size projects like LLVM. Hence while a single transac-
tion may provide stronger guarantees, file level transaction
proved to be a more adequate solution, where the required
time is more or less linear with the quantity of parsed files,
depending on the length and content of the files in question.

Table 3: Time measures of incremental parsing the
LLVM project by file level transactions

Parse type Changed files Time
1% change 28 9 min 30 sec
5% change 142 49 min
10% change 284 1 h 21 min

4. CONCLUSIONS
Incremental parsing was introduced into CodeCompass to
reduce the costs of parsing, both time and computational
resources, by omitting unchanged files in the project. The
feature distinguishes added, deleted and modified files and
handles them accordingly. The early tests of incremental
parsing were run on the Xerces-C++ and LLVM projects
and showed that it works according to its original purpose,
especially in decreasing the timespan of parsing. While
the results are promising, further challenges include the im-
proved reduction of the timespan required by incremental
parsing through parallelizing the process.

53

Figure 2: Downward traversing of a.h demonstrated on a showcase file set.

5. ACKNOWLEDGMENTS
This work is supported by the European Union, co-financed
by the European Social Fund (EFOP-3.6.3-VEKOP-16-
2017-00002).

6. REFERENCES
[1] Clang: a C language family frontend for LLVM.

https://clang.llvm.org/.

[2] The LLVM Compiler Infrastructure.
https://llvm.org/.

[3] Xerces-C++ XML Parser.
https://xerces.apache.org/xerces-c/.

[4] Zapcc – A (Much) Faster C++ Compiler.
https://www.zapcc.com/.

[5] T. Brunner and M. Cserép. Rule based graph
visualization for software systems. In Proceedings of
the 9th International Conference on Applied
Informatics, pages 121–130, 2014.

[6] M. Cserép and D. Krupp. Visualization Techniques of
Components for Large Legacy C/C++ software.
Studia Universitatis Babes-Bolyai, Informatica,
59:59–74, 2014.

[7] M. Karasick. The Architecture of Montana: An Open
and Extensible Programming Environment with an
Incremental C++ Compiler. SIGSOFT Softw. Eng.
Notes, 23(6):131–142, Nov. 1998.

[8] R. Medina-Mora and P. H. Feiler. An incremental
programming environment. IEEE Transactions on
Software Engineering, (5):472–482, 1981.

[9] Z. Porkoláb, T. Brunner, D. Krupp, and M. Csordás.
Codecompass: An open software comprehension
framework for industrial usage. In Proceedings of the
26th Conference on Program Comprehension, ICPC
’18, pages 361–369, New York, NY, USA, 2018. ACM.

[10] V. Savitskii and D. Sidorov. Fast analysis of source
code in C and C++. Programming and Computer
Software, 39(1):49–55, 2013.

[11] R. Szalay, Z. Porkoláb, and D. Krupp. Towards better
symbol resolution for C/C++ programs: A
cluster-based solution. In IEEE 17th International
Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 101–110. IEEE, 2017.

[12] T. Tromey. Incremental compilation for GCC. In
Proceedings of the GCC Developers’ Summit. Citeseer,
2008.

[13] T. A. Wagner. Practical algorithms for incremental
software development environments. PhD thesis,
Citeseer, 1997.

[14] T. A. Wagner and S. L. Graham. Efficient and flexible
incremental parsing. ACM Transactions on
Programming Languages and Systems (TOPLAS),
20(5):980–1013, 1998.

54

Visualising Compiler-generated Special Member Functions of
C++ Types

Richárd Szalay
Eötvös Loránd University, Faculty of Informatics

Department of Programming Languages and Compilers
Budapest, Hungary

szalayrichard@inf.elte.hu

Zoltán Porkoláb
Eötvös Loránd University, Faculty of Informatics

Department of Programming Languages and Compilers
Budapest, Hungary

gsd@elte.hu

ABSTRACT
In the C++ programming language, special member functions are
either user-defined or automatically generated by the compiler.
The detailed rules for when and how these methods are generated
are complex and many times surprise developers. As generated
functions never appear in the source code it is challenging to com-
prehend them. For a better understanding of the details under the
hood, we provide a visualisation method which presents gener-
ated special functions in the form of C++ source code that in effect
identical to their implicit versions.

CCS CONCEPTS
• Software and its engineering → Source code generation;
Software maintenance tools; • Human-centered computing
→ Information visualization;

GENERAL TERMS
programming languages, software development, visualisation

KEYWORDS
C++ programming language, compilers, code comprehension, code
design

1 MOTIVATION
Languages supporting the Object-oriented programming (OOP)
paradigm define a central principle of object lifetime which is sur-
rounded by construction/initialisation and destruction/finalisation.
In the Java programming language, apart from the basic default
construction – where everything is initialised to the respective zero
value – the developer must explicitly state their intent for different
construction logic, custom finalisation. A special case is when a
new object is created from an already existing one, where deep copy
(clone) operations or conversions might be warranted. In C++, how-
ever, the Language Standard specifies that these aforementioned
actions, in the form of special member functions [8], should have a
default implementation automatically generated by the compiler
if the user does not explicitly write them. The rules which dictate
the conditions for generating the special member functions and
their behaviour can appear dauntingly complex, and subsequent
versions of the language standard may revise and elaborate these
rules, increasing their complexity. The most recent, and most sig-
nificant such change was with the release of the C++11 standard,
which introduced move semantics [9].

Modernising code initially written for an older standard can be
cumbersome as the behaviour of special members are never directly

expressed, yet relied upon by the most trivial codes. What’s more,
the compiler is free to lazily evaluate the generation of these mem-
bers, which results in one such member’s non-availability to only be
reported when its usage was attempted. In case the used software
library is outdated or not easily modifiable, or not open source, this
can result in loss of run-time performance or development effort
wasted on having to redesign parts of the software. For discovery
and understanding of the existence and behaviour of these methods,
developers can either consult the Language Standard, read Abstract
Syntax Trees (ASTs), or view the disassembly of the binary — none
of which is favourable for the average developer.

1 # include < io s t r e am >
2 s t ruc t A { in t x } ;
3 in t main () {
4 A a1 ; / / <− De f a u l t c o n s t r u c t o r c a l l e d .
5 a1 . x = 5 ;
6 A a2 (a1) ; / / <− Copy c o n s t r u c t o r c a l l e d .
7 a1 . x = 6 ;
8
9 / / W i l l p r i n t " 6 5 " .

10 s t d : : cou t << a1 . x << " ␣ " << a2 . x ;
11 }

Listing 1: Example code which uses a default and a copy con-
structor.

To aid ongoing development and code comprehension of projects
we introduced a tool that allows pretty-printing the visual represen-
tation of special member functions that is the closest to how they
would be written by developers. To further this aid, we don’t only
show the compiler-generated special members, but provide a subset
of the type’s all member functions which shows both user-written
– e.g. a constructor that initialises from a different data type – and
the standard, implicit ones. We used the open source LLVM/Clang
Compiler Infrastructure [16] for parsing and generation.

The rest of the paper is organised as follows. In Section 2 we
discuss the purpose and rules of C++ special member functions.
Then, Section 3 describes the implementation approach and chal-
lenges faced with respect to pretty-printing and presentation to the
developers. The paper concludes in Section 4.

2 C++ SPECIAL MEMBER FUNCTIONS
Special member functions in C++ denote the functions that are
necessary for the management of instances’ lifetime. [12] These
are the constructors, the assignment operator and the destructor.

55

CSS’2018, October 2018, Ljubljana, Slovenia Richárd Szalay and Zoltán Porkoláb

2.1 Constructors
Constructors are responsible for the initialisation of an object. They
are usually executed together with the memory allocation for the
instance. Unless the user specifies and provides any constructor
function, both C++ and Java will generate a default constructor. In
Java, this function initialises every data member to their respective
zero value, such as integer 0, rational 0.0, the \0 character, or a
null reference. In C++, the initial state of the members depend on
the storage scope of the object – in most cases, the memory garbage
is retained from the memory block where the object is allocated.
Unlike Java, however, the default constructor is not created if at
least one data member does not have a default constructor.

Another case of construction is when a new object is initialised
from the state of another, already living object of the same type. In
Java, this functionality can be achieved in multiple ways, one of
which is by using the special clone() function. This function is
defined in Object, and performs a shallow copy of the instance in
question, only initialising the new object’s members to the same
value of the cloned one [4, 11]. In case of references to other objects
results in aliasing, the sharing of the same resource – usually an
internal buffer – by two separate entities. Another problem with
clone() is that the existence of the cloneability marker and the
respective method must exist through the whole chain of the type
hierarchy – it is usually referred to as an epidemic [10]. What’s more,
cloning does not actually invoke a construction, but rather creates
a copy of the memory’s snapshot, which means that business logic
strictly bound to a constructor, such as initialisation of read-only
members, cannot be done. In C++, the default behaviour of the copy
constructor is to run the copy construction of every data member.
For fundamental types, this means a copy of the value, and for more
complex types their respective copy constructors are called. Thus,
in case a custom resource which can be properly deep-copied is
used the copy constructor that is generated for the object using this
resource will be sufficient.

2.2 Destructor
The destructor or finalise is called at the end of an instance’s life-
time and is responsible for tearing down the state of the instance.
This most commonly means releasing resources, performing clean-
up tasks and committing changes, e.g. to a database. In Java, the
finalize() method’s implementation is run for an object at an
unspecified point in time when the runtime’s garbage collector de-
cides that the object is to be reaped. [3] The behaviour differences
between Java Virtual Machine versions and the general looming
of a finalisation never happening for an instance resulted in a con-
sensus on not using finalize() – it has also been deprecated
since Java 9. Instead, the AutoCloseable design pattern is used that
explicitly requires writing a close() method which executes tear-
down logic, but can be called arbitrarily by the developers when
teardown is deemed necessary, such as at the end of finishing a
database operation. In C++, a destructor can be written by the
user or is automatically generated by the compiler. It is always
executed immediately when an instance’s lifetime ends. The gener-
ated destructor does nothing in its body, and then the destructor
of each data member is executed individually – as their lifetimes
also expired. Thus an implicit destructor always exists unless a

data member’s destructor is explicitly hidden – this is a common
practice for scenarios where a controller has to ensure an orderly
or batch destruction.

2.3 Assignment operators
Contrary to Java, where there exists only primitive types and ref-
erences, C++ is a language with value semantics. Assigning to a
reference in Java only results in the actual memory modification
of a memory address’ size. The object that is no longer referred by
the assigned-away reference is then left for garbage collection, if
applicable. In C++, however, this means that assigning an object
to another object of the same type results in the assigned-to object
having the assigned object’s state’s copy within its own memory
region. Traditionally, copy assignment operators have a “destructor”
part where the current object’s resources and buffers are released,
and then a “copy constructor”-like logic where the copy of state
takes place, however, the developer is free to choose a different
implementation. The compiler-generated copy assignment operator
implements a memberwise copy assignment for the entire object.
Thus, the copy assignment operator is not generated by the com-
piler due to type infeasibility if one of the data members cannot be
copy-assigned.

It is noteworthy to mention that not every language has defined
the = assignment operator as an operator: in some languages, such
as Ada or Pascal, assignment is defined as a statement/instruction,
rather than an operator application. This has led to the inability
to write copy assignment logic in Ada. To avoid use of assignment
on types that are not designed for memberwise copy the limited
keyword [18] and type-annotation is used.

In C++ it is commonly referred as The Rule of Three that if any
of the copy constructor, copy assignment operator, and destruc-
tor is written explicitly by the developer, all of them should be
written explicitly. This rule of thumb is not enforced by compil-
ers but considered a good practice, because, as discussed earlier,
explicitly specifying either will not stop the compiler from automat-
ically creating the implicit definitions of the other special member
functions.

2.4 Members for move semantics
The release of the C++11 Language Specification has introduced
move semantics, which allows resources to be directly “stolen” by a
variable from another, as opposed to a copy-constructed and the
original data’s memory destroyed. [13] This is used heavily with
temporary objects which would get destroyed in the next statement.
The move special members’ default implementation executes amove
construction or move assignment of every data member, however,
the rules for their existence are more exquisite. Move members
are not generated automatically if any explicit destructor, copy or
move member exists, and an explicitly defined move member also
turns off the automatic generation of copy members.

Accordingly, the Rule of Three has been extended to also include
the two move members, and is referred to as The Rule of Five.

56

Visualising Compiler-generated Special Member Functions of C++ Types CSS’2018, October 2018, Ljubljana, Slovenia

3 IMPLEMENTATION
3.1 Syntax transliteration
We used the open source LLVM/Clang Compiler Infrastructure for
parsing and generation of special member visualisations because
Clang’s object-oriented Abstract Syntax Tree (AST) API allows for
an optimised and maintainable application. An example subtree of
the AST corresponding to the source code in Listing 1 can be seen
in Listing 2. The copy constructor’s body corresponds to copying the
right-hand record’s single data member into the current record’s
corresponding data member.

CXXConstructorDecl </ tmp / main . cpp : 3 : 8 >
i m p l i c i t used c o n s t e x p r A vo id
(c o n s t s t r u c t A &) noexcep t i n l i n e

ParmVarDecl 20 f 9 0 c 0 used c o n s t s t r u c t A &
CXXCtorInit ial izer F ie ld x i n t

ImplicitCastExpr i n t <LValueToRValue >
MemberExpr c o n s t i n t l v a l u e . x

DeclRefExpr c o n s t s t r u c t A
l v a l u e ParmVar 20 f 9 0 c 0 ' '
c o n s t s t r u c t A &

CompoundStmt

CXXConstructExpr < c o l : 7 , c o l : 11 > s t r u c t A
vo id (c o n s t s t r u c t A &) noexcep t

Listing 2: The ClangAST representation of the implicit copy
constructor’s body, and the call to it in main().

Other compilers, might use different internal representations, on
which these transformations would be infeasible to execute – in case
of GNU/GCC, the Register Transfer Language (RTL) is only meant
to be used by compiler-internal applications and code generation is
organised into various steps called loops. The example of the same
copy construction can be seen in Listing 3, which has already been
stripped of semantic information and only the memory access for
the data member can be studied from it by humans. It should be
noted that the presented representation is the earliest and shortest
where copy construction is apparent on the inner data member level.
Previous transformation loops only show the copy constructor’s
call source line in it’s original form, i.e. A a2(a1);.

(insn 7 6 8 2
(se t (mem/ c : S I (plus : DI (reg / f : DI 82

v i r t u a l− s t a c k− v a r s)
(c o n s t _ i n t −8 [0 x f f f f f f f f f f f f f f f 8]))

[1 a2 +0 S4 A64])
(reg : S I 9 1)) " / tmp / main . cpp " : 6 −1

(ni l))
Listing 3: The GNU RTL of the copy constructor call in line
9 of Listing 1.

We have utilised Clang’s architecture to perform a parsing on
the translation unit, and then performed a traversal on the built
AST searching for all records, or a particular record with a name
specified by the user. Once the record is found, we visit every special
member’s body, and in the case of constructors their initialiser

lists [5] too. The AST nodes found in the subtrees of these nodes are
then manually converted into a textual, source code representation.

s t ruc t A {
A () { } / / The d e f a u l t c o n s t r u c t o r .
/ / The copy c o n s t r u c t o r .

A(const A & rhs) : x (rhs . x) { }
} ;

Listing 4: The special members of the example class in List-
ing 1 translated back to source text.

There are three interesting cases that need to be noted, where
explicit source code differs from what a compiler generates for itself
automatically. First of all, the compiler generates the implicit mem-
bers’ arguments without an argument name. One such example
can be seen in Listing 2, where the ParmVarDecl (parameter vari-
able declaration) has no name, and the initialiser’s DeclRefExpr
(declaration reference expression) only refers to this ParmVarDecl
by its memory address, 20f90c0. Such a construct cannot exist in
actual source code. As a remedy, we manually assign the name rhs
to the variable – or in case multiple parameters would be possible,
number them as arg_1, arg_2, . . . – and use it in the pretty-printed
code.

Another such interesting case is about move constructors and
move assignment operators, namely that the compiler generates the
argument as a temporary, an xvalue, from which move operations
can be done. However, T&& rhs written in source code specifies
a named variable, an lvalue, from whose members move must ex-
plicitly be specified by using a type annotation std::move, which
casts the members to be xvalues which denote variables that are
essentially transformed into a temporary and their resources can
be moved from. The pretty-printer annotates the right-hand sides
of move initialiser or assignment expressions with std::move to
ensure the same semantics. We only do this for record types, as no
fundamental type supports move operations.

The third case is with regards to inheritance. In case a class has
at least one superclass, the special members’ default behaviour is to
cast the current instance to the base class and call the appropriate
constructor or assignment operator for each base class. A core
principle in object-oriented programming is that up-casting – cast
to any base class – is always possible and well-defined, however,
this would result in unintelligible source code lines, such as *this
= rhs; – which would lead to an infinite recursion if written in
source code verbatim. The type system allows us to see that this =
is for the base class, so we explicitly wrap the statement into a cast
at the appropriate location to show base class initialisation to the
developer. Examples of these cases are depicted in Figure 1.

We have encountered that the Standard only specifies generating
a body for a special member if the currently compiled translation
unit ODR-uses [7] the function. While no compiler error is given at
compilation for an infeasible, implicit deleted special member unless
used, the type system in Clang annotates the forward declaration
of the function if it is deleted. Thus by using this annotation and
the related diagnostics, we can, for each member without a body
achieve either an explicit body generation or printing the reason
behind the member being deleted by the type system in a single pass.
It should be noted that generating the body for members which are

57

CSS’2018, October 2018, Ljubljana, Slovenia Richárd Szalay and Zoltán Porkoláb

Figure 1: Special member overview for a class with two base
classes and a single char data member.

allowed to have one, and it is only an optimisation that generation
didn’t take place is a non-functional change and does not affect
the semantics of the generated code – thus this transformation can
safely be integrated into other compilation steps.

3.2 Special member overview
To facilitate better code comprehension, we have decided not only
to show the implicit special members but every related overload of
constructors and assignment operators. This allowed us to show
a subset of the class’ members which are related to the instance’s
lifetime.

The full overview proves useful when a special member is de-
faulted. If for example, a class contains some constructors and a
user-defined copy constructor, the move members will not be gen-
erated automatically, however, the developer can explicitly ask the
compiler to generate the methods with the implicit body rules by
using the = default specifier, available in C++11 and onwards.
This is the suggested approach for modern C++, practised by most
open-source projects. In this case, we show these members’ body
along with the rest of the class with the annotation that the user
requested the body generation.

Another case for the full view is showing the reason why a
special member was not automatically generated by printing a hint
from the semantic analysis’ diagnostics.

4 CONCLUSION
In this paper, we have discussed the rules and behaviour of auto-
matically generated special member functions, an intrinsic feature
of the C++ programming language. We have introduced an ap-
proach to transliterate the compiler’s internal representation of
these special members to source text to promote understanding
of software projects without resorting to unfavourable techniques
such as reading syntax trees manually.

We have implemented our solution in the open-source code com-
prehension tool CodeCompass [1, 14, 15] — http://github.com/
Ericsson/CodeCompass — as an additional visualisation over C++
files. The upstreaming of this addition is underway at the writing
of this paper.

ACKNOWLEDGMENTS
This work presented in this paper was supported by the Euro-
pean Union, co-financed by the European Social Fund in project
EFOP-3.6.3-VEKOP-16-2017-00002.

REFERENCES
[1] CodeCompass. 2012. A software comprehension tool for large-scale software

written in C/C++ and Java. http://github.com/Ericsson/CodeCompass
[2] Margaret Ellis. 1990. The Annotated C++ Reference Manual. Addison-Wesley,

Reading, Massachusetts, USA.
[3] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, Alex Buckley, and Daniel

Smith. 2017. Finalization of Class Instances (1st ed.), Chapter 12.6, 389–393. In
[4]. https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf visited on 2018-08-13.

[4] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, Alex Buckley, and Daniel
Smith. 2017. The Java Language Specification, Java SE 9 Edition. https://docs.
oracle.com/javase/specs/jls/se9/jls9.pdf visited on 2018-08-13.

[5] ISO. 2012. Initializing bases and members, Chapter 12.6.2, [class.base.init]. In
[6]. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=50372

[6] ISO. 2012. ISO/IEC 14882:2011 Information technology — Programming languages —
C++, version 11 (C++11). International Organization for Standardization, Geneva,
Switzerland. 1338 (est.) pages. http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=50372

[7] ISO. 2012. One definition rule, Chapter 3.2.3, [basic.def.odr]. In [6]. http://www.
iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

[8] ISO. 2012. Special member functions, Chapter 12, [special]. In [6]. http://www.
iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

[9] ISO. 2012. Temporary objects, Chapter 12.2, [class.temporary]. In [6]. http://www.
iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

[10] Marián Juhás, Zoltán Juhász, Ladislav Samuelis, and Csaba Szabó. 2009. Measur-
ing the complexity of students’ assignments. Annales Universitatis Scientiarum
Budapestinensis de Rolando Eötvös Nominatae. 31 (2009), 203–215.

[11] Zoltán Juhász, Marián Juhás, Ladislav Samuelis, and Csaba Szabó. 2008. Teaching
Java programming using case studies. Teaching Mathematics and Computer
Science. 6(2) (2008), 245–256.

[12] Stanley Lippman. 1996. Inside the C++ Object Model. Addison Wesley Longman,
Reading, Massachusetts, USA.

[13] Scott Meyers. 2015. Effective Modern C++: 42 specific ways to improve your use of
C++11 and C++14. O’Reilly Media, Sebastopol, California, USA.

[14] Zoltán Porkoláb and Tibor Brunner. 2018. The CodeCompass Comprehension
Framework. In Proceedings of the 26th Conference on Program Comprehension
(ICPC ’18). ACM, New York, New York, USA, 393–396. https://doi.org/10.1145/
3196321.3196352

[15] Zoltán Porkoláb, Tibor Brunner, Dániel Krupp, and Márton Csordás. 2018. Code-
Compass: An Open Software Comprehension Framework for Industrial Usage.
In Proceedings of the 26th Conference on Program Comprehension (ICPC ’18). ACM,
New York, New York, USA, 361–369. https://doi.org/10.1145/3196321.3197546

[16] The LLVM Project. 2003. Clang: C Language Family Frontend for LLVM. http:
//clang.llvm.org visited on 2018-08-13.

[17] Bjarne Stroustrup. 1994. The design and evolution of C++. Addison-Wesley,
Reading, Massachusetts, USA.

[18] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, and Erhard Ploedereder. 2000.
Consolidated Ada Reference Manual: Language and Standard Libraries. Springer-
Verlag, Berlin, Heidelberg, Germany.

58

http://github.com/Ericsson/CodeCompass
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://doi.org/10.1145/3196321.3196352
https://doi.org/10.1145/3196321.3196352
https://doi.org/10.1145/3196321.3197546
http://clang.llvm.org
http://clang.llvm.org

How Does an Integration with VCS Affect SSQSA?

Bojan Popović
Naovis d.o.o.

Bulevar oslobod̄enja 30A
Novi Sad, Serbia

bojan.popovic@primafin.com

Gordana Rakić
University of Novi Sad, Faculty of Sciences Trg

Dositeja Obradovića 4
Novi Sad, Serbia

goca@dmi.uns.ac.rs

ABSTRACT
Contemporary trends in software development almost nec-
essarily involve version control system (VCS) for storing and
manipulation of source code and other artifacts. Conse-
quently, tools supporting the development process such are
software analysis tools integrate with VCS. In most of cases
tools support only analysis of the resources in VCS reposi-
tories, while some of them rely on VCS to improve analysis
process and results. In this paper we explore how an inte-
gration of the SSQSA platform with VCS influences some of
its performances.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Software quality analysis, intermediate representation, Ver-
sion Control System

1. INTRODUCTION
Quality of a software product is observed through the level of
satisfied requirements. It could be assessed by its execution
by applying different techniques of dynamic analysis. These
techniques are applicable when the product is ready for test-
ing which might be late to recognize weaknesses or issues.
On the other side, static analysis techniques are travers-
ing source code and its various intermediate representations
which makes them applicable already in the early phases of
software development process [5].

Contemporary software development practice relies on source
code repositories and their synchronization implemented by
various version control systems (VCS). VCS are used to store
the whole history of activities in the evolution of a software
product, from version information to the finest details about
every individual change in the repository, including informa-
tion about contributors to the changes.

Consequently, software analysis tools integrate support for
VCS. Usually this support means possibility to analyze code
stored to VCS repositories. In some cases tools also rely
on advantages of VCS to improve analysis performances or
results.

In this paper we explore potential advantages of integration
of SSQSA (Set of Software Quality Static Analyzers) plat-
form [9] with GIT [2] as a representative VCS. First, we
introduce a concise background by describing VCS (Section
2) and SSQSA (Section 3). Prerequisites for the integration
and the integration are described in the section 4. We dis-
cuss results in the section 5 and possible application models
and scenarios in the Section 6, that is followed by comparison
to related integration solutions (Section 7). We conclude the
paper in the Section 8. This paper is summary of a master
thesis described in [8] (in Serbian).

2. VERSION CONTROL SYSTEMS
Version control systems (VCS) might have very broad appli-
cation in different areas of content manipulation for personal
or professional purposes. These are tools used primarily to
support teams and individuals in development and mainte-
nance of a software products. These systems remember all
the changes of separate files, so that at any time we can re-
cover a specific version, or follow and compare changes over
the time. In this way, all data is safer, good synchronization
between the team members is ensured, the possibilities for
errors are significantly reduced, and therefore the project
development process is improved.

VCS are divided into two large groups [2]:

CVCS: Centralized Version Control System where all the data
are stored to a centralized server. This approach is cer-
tainly easier to maintain, but in case of system failure,
all information about the project will be lost. Addi-
tionally, availability of a network connection is very
important. Previously, this was the standard way to
execute version control. Representatives of this group
are CVS: Concurrent Versions System [4] and Subver-
sion [3].

DVCS: Distributed Version Control System where clients map
the whole repository. If a server failure occurs, any of
the client repositories can be copied back to the server
to restore it. However, local copy enables us to work on
changes independently of a network connection while

59

Property Git Mercurial

Simple GUI - +
Getting started for beginners - +
Simplicity branches visualization - +
Speed (Windows OS) - +
Speed online + -
Changing the history + +
Using the index + -
PL independent extensions + -
Repo. migrating to another system + -

Table 1: Comparison between Git and Mercurial

the connection is necessary only for saving changes at
the remote repository or taking a version from it. Files
stored on the hard disk are of small size, and hence this
does not pose a problem problem of a storage space.

An additional advantage of DVCS is that we can share the
changes with other team members before they are shared
globally. On the other hand, there is little advantage of cen-
tralized systems compared to distributed ones. Centralized
systems offer us an easier way to control all the people who
access the server, as well as easy provision of a central point
where all the changes are in place. They also offer us the
option of downloading only a piece of code, if we only need
to work on a project module. However, if needed, one copy
of the project in the DVCS can be announces as the main
one, and thus we can simulate the centralized system.

Distractions that can be addressed to distributed systems
are more technical. For example, in case of a project with
many large files that can not be compressed, more storage
space is required. Additionally if we are working on a large
project that contains many customized changes, download-
ing a full version of the project can take longer than ex-
pected, and also take up more space on the hard drive than
expected.

All described differences bring to the decision to conduct
the first experimental integration SSQSA platform with a
DVCS. Therefore, we compare Git [2] and Mercurial [6]
as the main representatives of DVCS in order to compare
their properties to our requirements (Table 1). We can
conclude that Mercurial has better characteristics from the
users point of view, but for our integration these character-
istics do not have value. On the other hand easiness to inte-
grate with other systems, possibility to migrate to an other
system and speed are extremely important to us. Therefore,
in this work, we integrate SSQSA with Git.

3. THE SSQSA PLATFORM
The SSQSA (Set of Software Quality Static Analyzers) [9]
is a set of tools that enables language independent static
software product analysis based on its source code. Lan-
guage independence is ensured by a universal intermediate
representation of a source code called eCST (enriched Con-
crete Syntax Tree). Once when this representation is pro-
duced for any system, written in any set of programming
languages, it can be transformed to some of derived inter-
mediate representations such are dependency networks, at
different abstraction levels, or flow graphs. The fact that

derived representations are generated based on eCST, by
a unique implementation of the derivation process, ensures
their language independence and universality, too.

By traversing all or some of these universal intermediate rep-
resentations different analysis algorithms are implemented.
Therefore, it is possible to have a single implementation of
every functionality that we integrate in the SSQSA which
ensures consistency of the results across different languages,
but also adaptability to a new language and extendability by
a new analysis [9]. Described process and a corresponding
platform design is illustrated by the Figure 1.

Current version of the SSQSA platform manipulates input
source code from an local directory (components colored by
gray color), while our primary goal in this research is to
integrate it to analyze the code stored in a Git repository.
Additionally, we will explore how usage of Git repository for
storing intermediate representation affects SSQSA platform
and its performances. This level of the integration will en-
able us to traverse only changed fragments of the structures,
which might further lead to improvement of performances
of the analyses. The first prototype includes only results of
generation of eCST in the repository. New components that
implement integration are yellow-colored in the Figure 1.

4. THE SSQSA AND GIT INTEGRATION
To enable collaboration of SSQSA with Git, it was neces-
sary to connect eCSTGenerator to Git repository and to
enable it to process the source code stored in it. After the
first connection eCSTGenerator is processing the whole con-
tent of the repository and generates its eCST representation.
Every next time, eCSTGenerator will process only changed
files. This feature was not easily implementable before the
integration with Git.

In addition, SSQSA uses advantages of its integration with
Git at one more level. Namely, after the set of eCST is
generated, it is stored to a Git repository so that other com-
ponents can also process only changes between versions. For
these purposes we do not use the same repository as it is a
dedicated development repository, while developers do not
have to be affected by the analysis.

5. RESULTS
To explore applicability aspects of the described integration
solution, we measure time needed for generation of eCST
representation of a JavaScript project ”proton-native”1.

First, we observe time needed only for generation of eCST
representation of the source code from the local folder and
compare it to the time needed to generate it for the code
stored in a Git repository (Table 2).

As we can see, for the first commit generation process lasted
for significantly longer time. The reason for this is time
needed for the connection to the Git repository. However,
even though process spends additional time on the connec-
tion, in later commits we get better results from the version
integrated with Git.

1https://github.com/kusti8/proton-native

60

Figure 1: SSQSA platform and its integration with Git

Version from a from a Time for the
no. of commit local dir Git repo Git connection

7. 744 ms 1250 ms 720 ms
14. 812 ms 1270 ms 754 ms
34. 1589 ms 1353 ms 739 ms
80. 1601 ms 1520 ms 870 ms
126. 1650 ms 1515 ms 780 ms

Table 2: Comparison between time needed for eCST
generation proccess from a local directory and from
a Git repository.

Eventually, if we include functionality for committing of gen-
erated eCST to a repository, time needed for whole process
goes over 6000ms. Obviously, in this scenario integration re-
duces performances of SSQSA. Still, further integration will
utilize benefits of version control to improve generation of
derived intermediate representations. Finally, it will be in-
tegrated with the analyzers. It can be expected that, with
the growth of data that will be saved up in the exchange,
traverse and analysis process, the benefits from the integra-
tion will also grow. Therefore, effects of the integration on
other components still have to be explored (Section 8.

6. APPLICATION SCENARIOS
Depending on a scenario, Git has three common application
models: a centralized model, a pull-request model, and a Di-
rector and Lieutenants model [2]. In a centralized system, all
members of the team synchronize their changes in a central
repository that stores all source code. In the pull-request
model, developers can make changes to his local repository,
and he commits them to his own repository, and can see the
changes that other team members make. In this model one
repository is considered the main repository. In order to ac-
complish the changes in it, a request is sent to the project
leader to pull the changes. The project leader can add devel-
oper’s repository as a remote repository, locally test changes,
and if everything is fine, save them to the main repository.
In a Director and Lieutenants model the project is divided
into sub-projects and distributed among teams. Each team
(sub-project) has its own repository and its leader, and usu-

ally works according to the pull-request model on the local
level.

The most practical model for implementing a new imple-
mentation for the use of Git is the pull-request model. A
project leader can start an eCST generator on a new repos-
itory commit to analyze the modified file. If a developer
wants to create XML trees, it can also launch an eCST gen-
erator at each commit. The problem can arise if more teams
are made and the eCST generation process is lunched then
only. In this case it must be adapted to go through all the
commits, not only looking at the latest changes.

The ”Director and Lieutenant”model is also suitable for new
implementation. Each sub-project has its own leader who
can create XML trees. Also, the leader of the repository
may generate eCST when joining new changes to a branch
of a project (merge). Also, if developers want to generate
XML trees, the same rules apply as with the Pull-Request
model.

The centralized model is the most unpractical model for us-
ing the new implementation. All team members commit
their changes to a centralized repository, which in this case
contains a lot of commits through which traversal should be
conducted.

7. RELATED SOLUTIONS
Many tools also support code analysis from various VCS
such as BCH: Better Code Hub2 and SonarQube3, primar-
ily because the repositories have become the standard code
storage. However, only some tools rely on versions for more
advanced analysis.

Lean Language Independent software analyzer (Lisa) is a
software that analyzes the quality of software projects. The
main goal of Lisa is to analyze a large number of project re-
visions asynchronously with minimal redundancy. Analyses
are aimed to cover as many analyzes, and as many program-

2https://bettercodehub.com/
3https://www.sonarqube.org/

61

ming languages as possible. These goals are comparable
with the goals of SSQSA, as well as the new implementation
presented in this paper. However, Lisa currently supports
three programming languages, while the SSQSA framework
currently allows us to work with more than ten program-
ming languages. Concerning the subject of this paper, We
can note certain differences in the approach to the problem
and the concrete solution implementation. For the needs
of the Lisa analyzer, a special interface called SourceAgent
has been developed. It supports the asynchronous access
to the Git repository and file revisions [1]. On the other
hand, SSQSA, with the current implementation, uses all the
benefits of the Git and the library for interactions with it,
looks at the differences between the last two committees,
and reads all the files that have been changed, and gener-
ates XML trees for them. Furthermore, Lisa communicates
directly with the Git repository by making a local copy of
the remote repository to a local hard disk, while our imple-
mentation allows reading from a local disk and thus does
not require an internet connection. Internet connection is
only needed if we want to save the generated XML tree in a
remote repository.

The Analizo is a solution that analyzes source code written
in different programming languages, whose emphasis was on
C, C ++ and Java. The analysis supports the reading of
content from remote repositories for each audit in which the
source code has been changed in the project [10] and, un-
like the SSQSA which currently allows reading of contents
only from the Git repository, allows reading from the Git
and Subversion repositories, and then generates CSV files.
SSQSA also compares file revisions and decides from which
files to create an XML tree. An advantage over Analizo is
that we can monitor file versions on a remote repository.
Again, the difference is in the number of supported lan-
guages: Analyzo supports three languages, while SSQSA
currently supports more than ten programming languages.

EvoJava is a tool for static code analysis of an input from
a Java repository. It uses a VCS to access the code, mines
the source repository, and calculates metrics. Unlike the
SSQSA platform, EvoJava uses Subversion (SVN) and pro-
cesses only .java files. The output file is also in .XML for-
mat, but containing metric results. EvoJava takes a list of
the code versions that is in the repository and thus creates
a model based on the XML-generated files [7]. SSQSA, on
the other hand, observes the latest changes that are commit-
ted to a remote repository, finds these files in the file system
and creates XML files based on them. Later it automatically
commits them to a special local or remote repository, where
we can track what changes were made during the evolution
of our software. We cane also note the variety in supported
programming languages in SSQSA while EvoJava only sup-
ports Java programming language.

8. CONCLUSION AND FUTURE WORK
Following actual trends in software development and soft-
ware analysis SSQSA frameworks goes into a direction of
integration with VCS. In this paper we compare character-
istics of different VCS and select Git as a first candidate for
the integration. Furtehr, we describe its integration with
Git and explore possible benefits from this integration for
the performances of the platform.

Integration is developed at two levels. At the first level
the platform is connected to the Git repository in order to
enable processing source code stored in it. At the next level
of the integration we use Git repository to store XML file
containing eCST intermediate representation of the source
code so that we can always look only for changes, and not
traverse all the code, or more precisely, eCST representation
of it. This is very important if we have in mind that one
input file (compilation unit) is represented by one eCST.

At the first look, the results of the integration are not promis-
ing. Namely, Git connection used the time that we can save
by looking only in the changes and not in the whole source
code. However, Without storing trees to the Git repository
we are already saving some processing time. In case when
we store eCST in a Git repository we are spending more
time but in the future work we will explore if this cost may
be payed off after extending this integration on generation of
derived representations and analyzers. For example, genera-
tion of dependency network currently traverses all the trees
while after the full integration with Git it will also look only
for changes. The similar expectation we have from an inte-
gration of analyzers with Git. Therefore, these integration
activities will be subject of the a future work, as well as
analysis of potential costs and benefits, and selection of the
most suitable usage scenarios.

9. REFERENCES
[1] C. V. Alexandru, S. Panichella, and H. C. Gall.

Reducing redundancies in multi-revision code analysis.
In Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference
on, pages 148–159. IEEE, 2017.

[2] S. Chacon and B. Straub. Pro git. Apress, 2014.

[3] B. Collins-Sussman, B. W. Fitzpatrick, and C. M.
Pilato. Version control with subversion, 2006.
Accessible in URL: http://svnbook. redbean. com, 2007.

[4] D. Grune et al. Concurrent versions systems, a
method for independent cooperation. VU Amsterdam.
Subfaculteit Wiskunde en Informatica, 1986.

[5] G. O Regan. Introduction to software quality.
Springer, 2014.

[6] B. O Sullivan. Mercurial: The Definitive Guide: The
Definitive Guide. ”O’Reilly Media, Inc.”, 2009.

[7] J. Oosterman, W. Irwin, and N. Churcher. Evojava: A
tool for measuring evolving software. In Proceedings of
the Thirty-Fourth Australasian Computer Science
Conference-Volume 113, pages 117–126. Australian
Computer Society, Inc., 2011.

[8] B. Popović. Integration of a platform for static
analysis with a version control system (in serbian).
Master’s thesis, Faculty of Sciences, University of Novi
Sad, 2018.

[9] G. Rakić. Extendable and adaptable framework for
input language independent static analysis. PhD thesis,
Faculty of Sciences, University of Novi Sad, 2015.

[10] A. Terceiro, J. Costa, J. Miranda, P. Meirelles, L. R.
Rios, L. Almeida, C. Chavez, and F. Kon. Analizo: an
extensible multi-language source code analysis and
visualization toolkit. In Brazilian conference on
software: theory and practice (Tools Session), 2010.

62

Indeks avtorjev / Author index

Beranič Tina ... 23

Chuchurski Martin.. 35

Cserép Máté ... 51

Fekete Anett ... 51

Heričko Marjan .. 19

Heričko Tjaša ... 31

Kamišalić Aida ... 19

Karakatič Sašo .. 27, 31

Kous Katja .. 23

Kuhar Saša ... 15

Leppäniemi Jari .. 7

Orgulan Mojca ... 35

Pataki Norbert .. 43, 47

Podgorelec Blaž.. 39

Podgorelec Vili ... 27, 31

Polančič Gregor .. 15

Popović Bojan .. 59

Porkoláb Zoltán .. 55

Rajšp Alen .. 23

Rakić Gordana .. 59

Rek Patrik ... 39

Révész Ádám ... 43

Rola Tadej .. 35, 39

Rupnik Rok .. 11

Sillberg Pekka .. 7

Šimenko Samo ... 27

Soini Jari... 7

Szalay Richárd ... 55

Tišler Aljaž ... 35

Török Márk .. 47

Turkanović Muhamed .. 19, 35

Unger Tea ... 35

Vodeb Aljaž ... 35

Welzer Tatjana ... 19

Žnidar Žan .. 35

63

64

Konferenca / Conference

Uredil / Edited by

Sodelovanje, programska oprema in storitve
v informacijski družbi /
Collaboration, Software and Services
in Information Society

Marjan Heričko

	01 - Naslovnica-sprednja-G
	02 - Naslovnica - notranja - G
	03 - Kolofon - G
	04 - 05 - IS2018 - Skupni del
	07 - Kazalo - G
	08 - Naslovnica podkonference - G
	09 - Predgovor podkonference - G
	10 - Programski odbor podkonference - G
	11 - Clanki - G
	01_Soini
	02_Rupnik
	03_Kuhar
	04_Kamisalic
	Introduction
	Methodology
	Experimental framework
	Experimental instruments

	Results and discussion
	Knowledge perception
	Knowledge perception and notation

	Conclusions
	Acknowledgments
	References

	05_Rajsp
	06_Simenko
	07_Hericko
	08_Vodeb
	09_Podgorelec
	10_Revesz
	11_Torok
	12_Fekete
	13_Szalay
	Abstract
	1 Motivation
	2 C++ Special Member Functions
	2.1 Constructors
	2.2 Destructor
	2.3 Assignment operators
	2.4 Members for move semantics

	3 Implementation
	3.1 Syntax transliteration
	3.2 Special member overview

	4 Conclusion
	Acknowledgments
	References

	14_Popovic

	12 - Index - G
	13 - Naslovnica-zadnja-G
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	04 - 05 - IS2018 - Predgovor in odbori.pdf
	04 - IS2018 - Predgovor
	05 - IS2018 - Konferencni odbori

	11 - Clanki - G.pdf
	01_Soini
	02_Rupnik
	03_Kuhar
	04_Kamisalic
	Introduction
	Methodology
	Experimental framework
	Experimental instruments

	Results and discussion
	Knowledge perception
	Knowledge perception and notation

	Conclusions
	Acknowledgments
	References

	05_Rajsp
	06_Simenko
	07_Hericko
	08_Vodeb
	09_Podgorelec
	10_Revesz
	11_Torok
	12_Fekete
	13_Szalay
	Abstract
	1 Motivation
	2 C++ Special Member Functions
	2.1 Constructors
	2.2 Destructor
	2.3 Assignment operators
	2.4 Members for move semantics

	3 Implementation
	3.1 Syntax transliteration
	3.2 Special member overview

	4 Conclusion
	Acknowledgments
	References

	14_Popovic

